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Pipelining in Real life
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Instruction Pipelining
� Method for increasing the instruction throughput of the processor [IPS] 

� Instruction execution may be partitioned into a fixed number of sequential steps, 
e.g. (ARM7): 
� Fetch (instruction from memory) 

� Decode (opcode and operands) 

� Execute… 

� Stages may be executed in parallel, e.g. the CPU works with several instructions at 
the same time 
� Increased Throughput

� Some instructions and code sequences may reduce the performance gain (pipeline 
stalls) because of dependencies 
� Developing techniques to avoid stalls is very “hot” in current microprocessor 
research

4
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3-Stage Pipeline

5

Basic Computer Components
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Main Memory
� Stores instructions and data for the processor 

� Connected to the processor via the memory bus 

Two main types: 

� Volatile, RAM (random byte wise read and write)
� SRAM 

� DRAM

� Non-volatile, ROM (read (and sometimes write…)) 
� OTPROM 

� EPROM 

� EEPROM 

� FLASH 

� FRAM

7

Memory Architectures
� Von Neumann machine/architecture 
� Memory viewed as a long continuous column of memory cells 

� No principal difference between data and instructions 

� No difference between different data types 

� Common physical storage for instructions and data 

� Harvard architecture 
� Principal difference between data and instructions 

� Physically separate memories and busses for data and instructions 

� May have different word length for data and instructions 

� Hybrid architecture 
� Harvard architecture between CPU and cache memory 

� In case of cache-miss: Von Neumann between CPU and main memory

8
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Memory Architectures
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Bus and Communication Interfaces
� Parallel Bus Systems

� Processor Buses – AVR etc.
� Industrial Buses
� VMEbus

� CompactPCI

� PC/104

� …

� Serial Local Buses
� SPI
� MicroWire
� I2C
� 1-Wire

� Serial Lines (1 to 1, 1 to N)
� UART
� RS-232C
� RS-422
� USB

10

� Networks (N to M)
� CAN

� RS-485

� LAN/Ethernet

� Wireless Communication
� IR/IrDA

� ISM

� WiFi

� Bluetooth

� Zigbee
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Parallel Bus Interfaces
� A bus is defined as a group of signal lines that shares a 

common function and that connects the processor to the 
memory and I/O devices in the system 

� The “three bus” system is the most common parallel bus 
architecture: 
� Address 

� Data 

� Control 

11

Address Space
� The range of memory locations addressable by a processor.

� Typically reflected by the width of the address bus 
� 16 bit � 2

�� = 64 KB 

� 32 bit � 2
�� = 4 GB 

� Linear (flat) address space 
� One contiguous block of bytes (words) 

� Logical address = physical address 

� Paged, Segmented 
� Organized in pages and/or segments:offsets (logical addresses) 

� Conversion between logical & physical addresses needed

12
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Address space of  AVR ATmega162

13

Interfacing External SRAM to ATmega162
The External Memory interface consists of:

� AD7:0 � Multiplexed low-order address bus and data bus

� A15:8 � High-order address bus (configurable number of 
bits)

� ALE � Address latch enable

� RD � Read strobe

� WR � Write strobe

14



11/27/2017

8

Interfacing External SRAM to ATmega162
The External Memory interface consists of:

� AD7:0 � Multiplexed low-order address bus and data bus

� A15:8 � High-order address bus (configurable number of 
bits)

� ALE � Address latch enable

� RD � Read strobe

� WR � Write strobe

15

Processor/Bus cycle ATmega162 (without wait states)

16
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Wait states
Problem: The processor is normally much faster than the peripheral devices 
connected to the bus interface

� Peripheral devices may not be able to respond to processor requests within 
the next clock state 

� Data on the bus may be invalid when they are read by the processor 

Solution: Wait states

� Synchronous processors: Injects one or more extra clock cycles into the bus 
cycle.

� Asynchronous processors: Delayed assertion of the DTACK signal.

17

Processor/Bus cycles ATmega162 – 2 wait states

18Wait States
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Address Decoding
� Address space is divided among 

several devices.

� Address Decoding Logic is 
configured according to the 
address space mapping.

� Address Decoding logic enables 
device(s) based on the address 
requested by the processor.

19
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Example: Memory Map & Address Decoding

Design an AVR-based computer that includes four devices in its address space: 

� One SRAM 32K, for data storage 

� Digital outputs for driving 24 LEDs using three 8-bit latches 

Make a memory map and address decoder for the system (use partial decoding)

20
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Selected Memory Map

Device Address Range A15 … A0

Internal/Unused 0x0000 – 0x1FFF 0000 0000 0000 0000
0001 1111 1111 1111

Latch0 0x2000 – 0x3FFF 0010 0000 0000 0000 
0011 1111 1111 1111

Latch1 0x4000 – 0x5FFF 0100 0000 0000 0000 
0101 1111 1111 1111

Latch2 0x6000 – 0x7FFF 0110 0000 0000 0000 
0111 1111 1111 1111

SRAM 0x8000 – 0xFFFF 1000 0000 0000 0000
1111 1111 1111 1111

21
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Address Decoding of  selected Memory Map

Device Address Range A15 … A0

Internal/Unused 0x0000 – 0x1FFF 000x xxxx xxxx xxxx

Latch0 0x2000 – 0x3FFF 001x xxxx xxxx xxxx

Latch1 0x4000 – 0x5FFF 010x xxxx xxxx xxxx

Latch2 0x6000 – 0x7FFF 011x xxxx xxxx xxxx

SRAM 0x8000 – 0xFFFF 1xxx xxxx xxxx xxxx

22
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Bus Multiplexing & Address Decoding

Atmega
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Memory Management

� Translation between logical and physical memory space.

� Memory Management Unit (MMU) handles the address translation (and other jobs).

25

Memory Management
� Physical memory > logical memory 

� Banked memory � Dividing the physical memory into N partitions (banks) where the size of each 
partition is equal to (or lesser than) the processor’s logical address space 

� Physical memory < Logical memory 
� Virtual memory � Exploits the entire logical memory space of the processor. On-demand loading of 

data blocks to the physical memory from secondary storage (paging). 

� Protection of memory regions 
� Monitor the address bus and intercept in case of unauthorized access to critical memory regions (OS, 

I/O space, interrupt tables etc.) (MPU) 

� Isolation of tasks/threads
� Prevent unauthorized access between the memory spaces of threads in a multitasking system 

26
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Example: Banked memory
In some cases it will be necessary to expand the physical memory beyond the logical 
memory space of the processor, e.g. 512Kb memory on a 16 bit address buss. 

� Solution: Map a data latch into the processor’s address room and use it to keep the 
4 MSB of the 19 bit physical address 
�16 memory banks of 32 Kb = 512 Kb available to the application 
� Needs software control 

27

Spring 2018: Advanced MCU Applications Lab
� What? 

� Advanced course on Microcontrollers’ Applications.

� Instructor
� Marten van Dijk

� When?
� Next semester: Spring 2018

� Who can join?
� Everyone who has taken ECE3411

� What will be taught?
� Parallel Bus Interfaces (for external SRAM  and other devices)

� Graphic OLED Display

� Controller Area Network (CAN Protocol)

� Wireless Protocols (E.g. Bluetooth)

� Analog Sensors Interfacing (E.g. Ultrasonic Sensors) & Motor Control (DC motors, Servo motors)

� Real-time Operating Systems

� Case studies

� Final Project: Collision Avoidance Robot

28
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ECE3411 – Fall 2017

Marten van Dijk
Department of Electrical & Computer Engineering
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Review Session
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Pulse Width Modulation using Timer 1

2

OCR1A = TOP

OCR1B

Non-Inverting Mode
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ADC

3
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Example code ADC, no interrupt

4

void main(void)
{

DDRC &= 0x00;     // PC1 = ADC1 is set as input

uart_init();
stdout = stdin = stderr = &uart_str;

// ADLAR set to 1 � left adjusted result in ADCH
// MUX3:0 set to 0001 � input voltage at ADC1
ADMUX = (1<<MUX0) | (1<<ADLAR);

// ADEN set to 1 � enables the ADC circuitry
// ADPS2:0 set to 111 � prescalar set to 128 (104us per conversion)
ADCSRA = (1<<ADEN) | (1<<ADPS2) | (1<<ADPS1) | (1<<ADPS0); 

// Start A to D conversion
ADCSRA |= (1<<ADSC);
fprintf(stdout,"\n\rStarting ADC demo...\n\r");

Takes more than 1ms, hence conversion 
will finish which takes 104us



11/27/2017

3

Example code ADC, no interrupt

5

while (1)
{

// Read from ADCH to get the 8 MSBs of the 10 bit conversion
Ain = ADCH; 

// Typecast the volatile integer into floating type data, divide by maximum 8-bit value, and 
// multiply by 5V for normalization
Voltage = (float)Ain/256.00 * 5.00; 

//ADSC is cleared to 0 when a conversion completes.  Set ADSC to 1 to begin a conversion.
ADCSRA |= (1<<ADSC);

// Write Voltage to string format and print (3 char string + “.” + 2 decimal places)
dtostrf(Voltage, 3, 2, VoltageBuffer);
fprintf(stdout,"%s\n\r",VoltageBuffer);

}

return 0;
}

Takes more than 1ms, hence conversion 
will finish which takes 104us

ADC Noise Reduction

6
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Watchdog Timer

7

#include <avr/wdt.h>

#include <avr/eeprom.h>
#define eeprom_true 0  //Suppose you want to store a flag at position 0
#define eeprom_data 1 //Suppose you want to store data at position 1

ISR (WDT_vect)
{

eeprom_write_dword((uint32_t*)eeprom_data,mode); //Write our current mode to EEPROM
eeprom_write_byte((uint8_t*)eeprom_true, 'T'); //Set write flag TRUE

}

void Initialize(void)
{

… all other initialization …
WDTCSR |= (1<<WDCE) | (1<<WDE); // Set Watchdog Condition Edit for four cycles
WDTCSR = (1<<WDIE) | (1<<WDE) | (1<<WDP3); // Set WDT Int and Reset; Prescalar at 4.0s. 

}

Watchdog Timer

8

int main(void)
{

// WDOG Interrupt and Reset Disable, this only matters if reset occurs. 
wdt_reset(); // Reset Watchdog timer 
MCUSR  &= ~(1<<WDRF); // Shut off Watchdog Reset Flag
WDTCSR |= (1<<WDCE) | (1<<WDE); // Set Watchdog Change Enable and WD Enable
WDTCSR  = 0x00; // Disable Watchdog

Initialize();
// Read TimeOut from EEPROM
if (eeprom_read_byte((uint8_t*)eeprom_true) == 'T')
{

mode = eeprom_read_dword((uint32_t*)eeprom_data);
}
else
{

mode = 0; // Begin in normal mode
}
while (1) { ….. }

}
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What is an Interrupt (recap)?
� A HW signal that initiates and event

� Upon receipt of an interrupt, the processor
� Completes the instruction being executed

� Saves the program counter (so as to return to the same execution point)

� Loads the program counter with the location of the interrupt handler code (ISR)

� Executes the interrupt handler (ISR)

� In practice, real time systems can handle several interrupts in priority fashion
� Interrupts can be enabled/disabled (By setting appropriate registers.)

� Highest priority interrupts serviced first (Which ones have the highest priority in Atmega328P?)

� Processor must check for interrupts very frequently: If any have arrived, it stops 
immediately and runs the associated ISR
� Processor repeats: do one operation; check interrupts; if interrupts then suspend task and run ISR

9

ISR
� ISR is a program run in response to an interrupt

� Disables all interrupts

� Clears the interrupt flag that got it called

� Runs code to service the event

� Re-enables interrupts

� Exits so the processor can go back to its running task

� Should be as fast as possible, because nothing else can happen when an interrupt is 
being serviced (when interrupts happen very frequently, tasks are being stalled and 
progress very slowly, in the worst case one instruction per ISR)

� Interrupts can be
� Prioritized (service some interrupts before others)

� Disabled (processor doesn’t check or ignores all of them)

� Masked (processor only sees some interrupts)

10
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Scheduling Policies
Static Scheduling Schemes

� Round-robin scheduling

� Rate-monotonic scheduling

� Deadline-monotonic scheduling

� Shortest Remaining Time First

Dynamic Scheduling Schemes

� Earliest deadline first scheduling

� Least slack time scheduling

11

Task State Diagram
� A task/process goes through several states during its life in a multitasking system

� Tasks are moved from one state to another in response to the stimuli marked on the 
arrows

12

Blocked Ready

Running

Waiting for I/O 
or other resource

Ready to be 
executed

I/O complete

Is an interrupt: The 
CPU stops what it is 
doing and marks the 
blocked task as ready

I/O request
Scheduler

Timer 
interrupt

Wait Queue Ready Queue

• Any tasks that are ready to run sit on the ready queue. 

This queue may be prioritized so the most important task 
runs next.

• When the scheduler decides the current task has had 
enough time on the CPU, either because it finished or its 
time slice is up, the Running task is moved to the ready 
queue. Then the first task on the ready queue is selected 
for Running.

• If the Running task needs I/O or needs a resource that is 
currently unavailable, it is put on the blocked queue. 
When its resource becomes available, it goes back to 
Ready.
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Address Decoding of  selected Memory Map

Device Address Range A15 … A0

Internal/Unused 0x0000 – 0x1FFF 000x xxxx xxxx xxxx

Latch0 0x2000 – 0x3FFF 001x xxxx xxxx xxxx

Latch1 0x4000 – 0x5FFF 010x xxxx xxxx xxxx

Latch2 0x6000 – 0x7FFF 011x xxxx xxxx xxxx

SRAM 0x8000 – 0xFFFF 1xxx xxxx xxxx xxxx

13
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SPI: Serial Peripheral Interface
� Synchronous Data Transfer

� Master/Slave configuration

� 4-Line Bus

� Full Duplex operation

15
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SPI Master SPI Slave

SPI Master Example

16

void SPI_MasterInit(void)
{

/* Set SS, MOSI and SCK output, all others input */
DDR_SPI = (1<<DD_SS) | (1<<DD_MOSI) | (1<<DD_SCK);
/* Enable SPI, Master, set clock rate fck/128 */
SPCR = (1<<SPE) | (1<<MSTR) | (1<<SPR1) | (1<<SPR0);

}

uint8_t SPI_Master_Transceiver(uint8_t cData)
{

PORTB &= ~(1<<SPI_SS); // Pull Slave_Select low
SPDR = cData; // Start transmission
while( !(SPSR & (1<<SPIF)) ); // Wait for transmission complete
PORTB |= (1<<SPI_SS); // Pull Slave Select High
return SPDR; // Return received data

}

Note:
DDR_SPI in the examples must be replaced by the actual Data Direction Register controlling the SPI pins.
DD_SS, DD_MOSI, DD_MISO and DD_SCK must be replaced by the actual data direction bits for these pins. 
E.g. if MOSI is placed on pin PB3, replace DD_MOSI with DDB3 and DDR_SPI with DDRB.
SPI_SS should be replaced with actual bit position of SS pin in the port corresponding to SPI pins.
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SPI Slave Example

17

void SPI_SlaveInit(void)
{

/* Set MISO output, all others input */
DDR_SPI = (1<<DD_MISO);
/* Enable SPI */
SPCR = (1<<SPE);

}

uint8_t SPI_SlaveReceive(void)
{

/* Wait for reception complete */
while(!(SPSR & (1<<SPIF)));
/* Return Data Register */
return SPDR;

}

Note:
DDR_SPI in the examples must be replaced by the actual Data Direction Register controlling the SPI pins.
DD_MOSI, DD_MISO and DD_SCK must be replaced by the actual data direction bits for these pins. 
E.g. if MOSI is placed on pin PB5, replace DD_MOSI with DDB5 and DDR_SPI with DDRB.

I2C: Inter Integrated Circuit bus
� Also known as Two Wire Interface (TWI)

� Allows up to 128 different devices to be connected using only two bi-directional bus lines, 
one for clock (SCL) and one for data (SDA).

� All devices connected to the bus have individual addresses.

18
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I2C Bus Arbitration
� Arbitration is carried out by all masters continuously monitoring the SDA line after outputting 

data.

� If the value read from the SDA line does not match the value the Master had output, it has 
lost the arbitration.

19
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UNIVERSITY OF CONNECTICUT

ECE 3411 Microprocessor Application Lab: Fall 2017

Problem Set A6
There are 5 questions in this problem set. Answer each question according to the instructions
given in at least 3 sentences on own words.

If you find a question ambiguous, be sure to write down any assumptions you make.
Be neat and legible. If we can’t understand your answer, we can’t give you credit!

Any form of communication with other students is considered cheating and will merit an F as final
grade in the course.

SUBMIT YOUR ANSWERS IN A HARDCOPY FORMAT.

Do not write in the box below

1 (x/6) 2 (x/30) 3 (x/30) 4 (x/24) 5 (x/10) Total (xx/100)

Name:

Student ID:



ECE 3411 Fall 2017, Problem Set A6 Page 2 of 17

1. [6 points]: Answer the following questions:

a. What is the purpose of so called wait states in external parallel bus interface of a processor?

b. The ARM Cortex-M features a Harvard architecture. What does that mean and what perfor-
mance advantages are associated with this architecture?

Initials:



ECE 3411 Fall 2017, Problem Set A6 Page 3 of 17

2. [30 points]: You need to implement a simple controller to monitor the altitude of an RC airplane
in flight. The altitude is measured by an on-board altitude sensor that supports a standard SPI slave
interface (refer to Figure 1).

The sensor provides an 8-bit value between 0 and 255 which linearly corresponds to an altitude of 0 to
1020 feet respectively.

Figure 1: Hardware configuration of the controller.

The MCU needs to read the sensor data over SPI strictly every 10 milliseconds. This data is stored in
a global variable called altitude, and used in the following two tasks which are already implemented
in a library:

• void Altitude Monitor(void)
– This task monitors safety critical events related to the altitude.
– It needs to execute every 10 milliseconds, immediately once the new SPI data is received.
– It takes negligible time to execute on the MCU.
– It is a high priority task and it must not be interrupted by any other task.

• void Altitude Display(void)
– This task displays the current altitude on LCD screen.
– It needs to execute every 1 second.
– It takes tens of milliseconds to execute on the MCU.
– It is a low priority task and it must be interruptable by other high priority tasks.

Initials:



ECE 3411 Fall 2017, Problem Set A6 Page 4 of 17

A. System level design choices: Answer the following questions:

a. Why or why not the specifications/properties of task Altitude Monitor() will be violated
if:

• This task is called inside the main function.
• This task is called inside an ISR.

Explain your answer.

b. Why or why not the specifications/properties of task Altitude Display() will be violated
if:

• This task is called inside the main function.
• This task is called inside an ISR.

Explain your answer.

Initials:
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B. Displaying the altitude: Given that the CPU clock frequency is 16.384 MHz (i.e. 16384000 Hz),
use task based programming approach to call Altitude Display() task every 1 second using only
Timer2.

/* Assume all necessary header files are included */

/* Declare & initialize your variables here */

int main(void)

{

/* Assume any initialization for Altitude_Display() is already done */

/* Perform Timer2 initializations here */

sei(); // Enable Global Interrupts

while(1)

{

/* Your code here */

}

} /* End of main() */

/* Timer 2 ISR: write the ISR code */

ISR(TIMER2_COMPA_vect)

{

} /* End of Timer2 ISR */

Initials:
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C. Reading and monitoring the altitude: Given that the CPU clock frequency is 16.384 MHz (i.e.
16384000 Hz), extend the code of Part B such that:

• The MCU reads the sensor data over SPI every 10 milliseconds.

• The task Altitude Monitor() is called every 10 milliseconds such that, while it is executing, it
is not interruptable by any other task.

Notice that you may use only Timer2.

/* Assume all necessary header files are included */

/* Declare your variables here */

volatile uint8_t altitude; // Store the received sensor data in this variable.

int main(void)

{

// Set SS, MOSI and SCK output, MISO input

DDRB |= (1<<DDB2)|(1<<DDB3)|(1<<DDB5);

/* Perform all Timer2 related initializations here */

/* You may simply write ‘‘Copied Over from Part B’’ or

write new code here to match new requirements */

/* Perform SPI Initializations here, enable interrupt */

sei(); // Enable Global Interrupts

while(1)

{

/* You may simply write ‘‘Copied Over from Part B’’ or

write new code here to match new requirements */

}

} /* End of main() */

Initials:
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/* Timer 2 ISR: write the ISR code */

ISR(TIMER2_COMPA_vect)

{

/* Manage Software counter */

/* Start SPI transmission */

} /* End of Timer2 ISR */

/* SPI ISR: Write the ISR code */

ISR(SPI_STC_vect)

{

/* Process the sensor data received over SPI */

} /* End of SPI ISR */

Initials:
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3. [30 points]: You need to implement a simple controller to steer an RC airplane in flight.
The airplane can be turned towards left/right or it can fly straight based on the positions of two ailerons,
one on each wing, as shown in Figure 2.

Left aileron Down

Right aileron Up

Roll Right

Left aileron Up

Right aileron Down

Roll Left

Go Straight

Right aileron in Center Left aileron in Center

Figure 2: Aileron positions and airplane’s direction of motion.

Each aileron is controlled by a servo motor that requires a PWM signal of 62.5Hz. The position of the
aileron is controlled by the duty cycle of the PWM signal as specified in the following table.

Aileron Position PWM Frequency (Hz) PWM Period (ms) PWM Duty Cycle (ms)
Aileron Down 62.5 Hz 16ms 1.25ms

Aileron Centered 62.5 Hz 16ms 1.50ms

Aileron Up 62.5 Hz 16ms 1.75ms

Two push switches SW0 and SW1, connected to external interrupts INT0 and INT1 respectively, are
used to control the direction of the airplane motion according to a finite state machine (FSM) shown
in Figure 3. Upon startup, the system is in STRAIGHT state. When SW0 or SW1 is pushed once, the
system goes to RIGHT or LEFT state respectively, and the airplane turns right or left by manipulating the
ailerons according to the Figure 2.

STRAIGHT RIGHTLEFT

SW0 PushedSW0 Pushed

SW1 PushedSW1 Pushed

Otherwise Otherwise
Reset

Figure 3: FSM of airplane steering controller.

Initials:
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The hardware configuration of ATmega328P based controller is shown in the figure below.

Figure 4: Hardware configuration of the controller.

The following code snippet provides the necessary layout and definitions.

#define F_CPU 16384000UL // CPU runs on 16.384 MHz

#include <avr/io.h>

#include <inttypes.h>

#include <avr/interrupt.h>

// Definitions for State Machine

#define STRAIGHT 0

#define RIGHT 1

#define LEFT 2

volatile uint8_t Current_State = STRAIGHT;

// Definitions for PWM

volatile uint8_t left_duty_cycle;

volatile uint8_t right_duty_cycle;

/* Main Function */

int main(void)

{

initialize_PWMs(); // Configure PWM related Timer & Signals

initialize_Switches(); // Configure External Interrupts

sei(); // Enable Global Interrupts

while(1); // Nothing to do.

}

Initials:
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A. Initializing Timer0 and PWMs:
Given that the CPU clock frequency is 16.384 MHz (i.e. 16384000 Hz), you need to generate two
62.5Hz PWM signals for the right and left servo on PD6 and PD5 respectively (as shown in Figure 4),
using only Timer0.

For this purpose, both channel A and B of Timer0 need to generate a PWM signal each for each wing.
Therefore, in order to synchronize the duty cycle updates for both, we require you to use only one
Timer0 ISR to reload the duty cycle values stored in variables left duty cycle and right duty cycle
into Timer0 register(s). Which ISR should it be?

(a) TIMER0 COMPA vect
(b) TIMER0 COMPB vect
(c) TIMER0 OVF vect

Complete the function initialize PWMs() by properly initializing Timer0 for this purpose, and by
also configuring the PWM pins as necessary. Notice that as soon as this function is executed, the
PWMs signals will start driving the servos. Therefore you need to configure the initial duty cycle of
both PWMs to be 1.50ms for centered position.

initialize_PWMs()

{

/* Configure Timer0 & pins for generating two PWMs here */

} */ End of initialize_PWMs() */

Initials:
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B. Configuring External Interrupts:
The switches SW0 and SW1 are connected to INT0 and INT1 as shown in Figure 4. Assume that these
switches are hardware debounced (i.e. no software debouncing is needed).
Complete the function initialize Switches() by configuring the external interrupts (INT0 and
INT1) properly. While configuring, keep in mind what logic value will be passed to the interrupt pin if
the corresponding switch is pushed (refer to Figure 4).

initialize_Switches()

{

/* Configure INT0 and INT1 here */

} */ End of initialize_Switches() */

Initials:
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C. Implementing the controller FSM:
Assuming that SW0 and SW1 are hardware debounced (i.e. no software debouncing is needed), im-
plement the controller FSM from Figure 3 inside INT0 and INT1 ISRs. In each of the states, modify
the duty cycle variables left duty cycle and right duty cycle accordingly. We assume that these
duty cycle values are used to program the PWM duty cycles in the ISR indicated in Part A which we do
not ask you to program.
Hint: It would be useful to split the FSM from Figure 3 into two FSMs, one for each input switch.

// External Interrupt INT0 ISR

ISR(INT0_vect)

{

/* Complete the FSM here */

switch (Current_State)

{

case LEFT:

break;

case STRAIGHT:

break;

case RIGHT:

break;

}

} /* End of ISR(INT0_vect) */

Initials:
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// External Interrupt INT1 ISR

ISR(INT1_vect)

{

/* Complete the FSM here */

switch (Current_State)

{

case LEFT:

break;

case STRAIGHT:

break;

case RIGHT:

break;

}

} /* End of ISR(INT1_vect) */

Initials:
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4. [24 points]: You need to design an AVR-based system that includes four external devices in its
address space:

• Two SRAMs of size 16 kilobytes each (i.e. 214 unique addresses) for data storage, having the
following control signals:

– WE: Write Enable (Active Low).
– OE: Output Enable (Active Low).
– CE: Chip Enable (Active Low).

• Two 8-bit latches to drive digital outputs for 16 LEDs.

– LE: Latch Enable (Active High).
– OE: Output Enable (Active Low).

The system should be based on a MCU of the type Atmel AVR ATmega162 (shown in Figure 5).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

ATmega162

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

VCC
PA0 (AD0/PCINT0)
PA1 (AD1/PCINT1)
PA2 (AD2/PCINT2)
PA3 (AD3/PCINT3)
PA4 (AD4/PCINT4)
PA5 (AD5/PCINT5)
PA6 (AD6/PCINT6)
PA7 (AD7/PCINT7)
PE0 (ICP1/INT2)
PE1 (ALE)
PE2 (OC1B)
PC7 (A15/TDI/PCINT15)
PC6 (A14/TDO/PCINT14)
PC5 (A13/TMSI/PCINT13)
PC4 (A12/TCK/PCINT12)
PC3 (A11/PCINT11)
PC2 (A10/PCINT10)
PC1 (A9/PCINT9)
PC0 (A8/PCINT8)

(OC0/T0) PB0
(OC1/T1) PB1

(RXD1/AIN0) PB2
(TXD1/AIN1) PB3

(𝑆𝑆/OC3B) PB4
(MOSI) PB5
(MISO) PB6

(SCK) PB7 
RESET

(RXD0) PD0
(TXD0) PD1

(INT0/XCK1) PD2
(INT1/ICP3) PD3

(TOSC1/XCK0/OC3A) PD4
(OC1A/TOSC2) PD5

(WR) PD6
(RD) PD7

XTAL2
XTAL1

GND

Figure 5: ATmega162 Pin Configuration.

By completing the subsections A and B, design an interface between the ATmega162 and the external
devices needed for this system.

Initials:
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A. Address Mapping & Decoding: (10 points)
Explain how you will organize the address space of the system and its associated decoding logic (re-
member that the lower 1280 addresses of ATmega162 are reserved).
Show your calculations/methodology and design the address decoding logic.

Initials:
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B. Overall System Interconnects: (14 points)
Draw a detailed schematic of the system which shows the interconnection of components/chips (details
may be limited to main signal lines/paths). Specify and draw chips, circuits and signals that you may
find necessary to include.
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5. [10 points]: Can you shortly describe what you have learned and feel confident about using in the
future?

End of Problem Set
Initials:
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ECE3411 – Fall 2017

Marten van Dijk
Department of Electrical & Computer Engineering

University of Connecticut
Email: marten.van_dijk@uconn.edu

RedBot

Independent LAB6.

Slides of I2C are copied from Lab 7b, ECE3411 – Fall 2015, 
by Marten van Dijk and Syed Kamran Haider
Some of these slides are extracted or copied from “RedBot
Project” offered at Sung Yeul Park in Spring 2016

RedBot

2

� Using Sparkfun’s RedBot Line Follower kit, you 
will implement a small robot that follows a line of 
electrical tape.

� Infrared Sensors are used to sample the desired 
path in reference to the robot’s trajectory.

� Movement is actuated by two PWM controlled H-
bridge modules.

� Description: 
https://www.sparkfun.com/products/13166

� Get started: 
https://learn.sparkfun.com/tutorials/getting-started-
with-the-redbot

� Schematic: 
https://cdn.sparkfun.com/datasheets/Robotics/RedBot
_Mainboard_v14.pdf

Warning: Please do not write anything to EEPROM, since 
this seems to prevent further programming of the MCU.  
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Using Atmel Studio to Program Arduino Board
� Since the board on RedBot is an Arduino Board, we are not able to directly use 

Atmel Studio to program it. We need to setup an external programmer in Atmel 
Studio for programming this board. 

� Please follow the following steps to setup the external programmer.

1. Download Avrdude from http://mirror.rackdc.com/savannah//avrdude/avrdude-
5.11-Patch7610-win32.zip

2. Unzip the downloaded file, rename the directory to avrdude, and copy it into your 
C drive 

3. Connect your board to your computer, open Device Manager, check the COM
port.

4. Open Atmel Studio, go to Tools -> External Tools

3

Setup External Programmer

5. Fill the dialog box like this:

6. The Arguments field in the dialog box is 

-C "C:\avrdude\avrdude.conf" -p atmega328p -c arduino -P COM9
-b 115200 -U flash:w:"$(ProjectDir)Debug\$(TargetName).hex":i

for most of 

The Arguments field in the dialog box is 

-C "C:\avrdude\avrdude.conf" -p atmega328p -c arduino -P COM9
-b 57600 -U flash:w:"$(ProjectDir)Debug\$(TargetName).hex":i

for most of 

4

Note: Update your COM number accordingly. If your programmer does not 
work after setup, change to the other argument. It must be one of these two. 
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Use External Programmer

5

Since the MCU on this board is also ATMega 328P, you just need to 
create the project and program as usual. 

Then first build the project, and click Tools-> Arduino Programmer 
to program your board.

Notice: This Arduino Programmer can only be used to program the  
board (not to build the solution), so you should always rebuild your 
solution before you program it.

RedBot Mainboard

6
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ATMega 328P Pin Assignment

7

Pin # Pin Name Port Name Ext Circuit

19, 22~29 ADC PC0~5 ADC input

30, 31 USART PD0, PO1 XBEE

32, 2 L_CTRL_1/2 PD2, PD4 Left Motor

1, 13~15 SERVO_1/2/3/4 PD3, PB1, PB2, 
PB3

9~10 PWML/R PD5, PD6

11~12 R_CTRL_1/2 PD7, PB0 Right Motor

29 RESET PC6

7,8 CLK PB6, PB7

18, 4, 6 AVCC, VCC

21, 3, 5 AGND, GND

20 AREF

16, 17 MISO, SCK PB4, PB5 6PIN ISP

Line Sensor

8

• QRE1113: Miniature Reflective Object Sensors
• The sensor works by detecting reflected light 

coming from its own infrared LED. 
• By measuring the amount of reflected infrared 

light, it can detect transitions from light to dark 
(lines) or even objects directly in front of it.
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Motor Control Mechanism

9

Task 1a: Reading Data from Sensors
� You are required to first initialize ADC and sample three sensors in a round robin 

fashion.

� Print ADC reads on your screen over UART.

� Test your sensors over a white surface and a black electrical tape, and figure out a 
proper threshold to distinguish “on tape” and “off tape” states.  

10
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Task 1b: Controlling Motors
� Generate the correct command for your motors.

� Test clockwise and counter-clockwise rotation.

� Test stop command. 

� Generate a PWM signal to control the speed of your motors.

11

Task 1c: Integration
� Use the data from three sensors to adjust the speed and direction of two motors.

� Test your simple line follower. 

12
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Task 2: PID Control
� Improve your line follower by implementing a PID controller in order to make your 

RedBot move more smoothly.

� Hint: In order to generate an error value in the PID controller, you can first use your 
thresholds to convert three raw ADC reads to a three-bit value. Then convert this 
three-bit value into an error value which should be a signed value. 
� E.g. when the left sensor is on the tape and the other two are not on the tape, you first convert it to 

0b100, and then convert it to error value -2. 

� E.g. when the left sensor and middle sensor are on the tape, convert it to error -1.

� This requires you to use fuzzy thresholds, e.g., you can take an average of the sensor values for a 
white surface and a black tape.

� Hint: The integral of errors can be calculated as a summation of all the errors. 

� Hint: The derivative of errors can be calculated as current error – last error. 

� Tip: The constant for the I term and D term do not need to be large in comparison 
with the constant for the P term.     

13

Task 3: Counting the laps
� There is one spot on the track where all the three sensors will sample black tapes. 

� Use this as an indicator of having completed one lap. 

� Whenever the RedBot passes this area, you need to toggle the on-board LED D13, which is connected 
with PB5. 

� Hint: Don’t forget to implement a debounced button to prevent toggling this LED more than once 
within one lap.  

� You need to demonstrate your RedBot on Wednesday Dec. 6th during lab hours.

� Email your commented code and submit a hard copy by noon Dec. 5th

� No revision or 24-hr extension token can be used !!!

� Based on your code we will ask a couple of questions.

14


