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Bus and Communication Interfaces
 Parallel Bus Systems

 Processor Buses – AVR etc.
 Industrial Buses

 VMEbus
 CompactPCI
 PC/104
 …

 Serial Local Buses
 SPI
 MicroWire
 I2C
 1-Wire

 Serial Lines (1 to 1, 1 to N)
 UART
 RS-232C
 RS-422
 USB

2

 Networks (N to M)
 CAN

 RS-485

 LAN/Ethernet

 Wireless Communication
 IR/IrDA

 ISM

 WiFi

 Bluetooth

 Zigbee
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Serial synchronous interfaces
 Local serial interconnection of microcontrollers and peripheral circuits/functions 

 Required features: 
 Low complexity 

 Low to medium data rate 

 Small physical footprint/few pins 

 Short distances 

 Low cost

 Most MCUs have built-in peripheral units for communicating with external circuits, 
e.g. ATmegaAVR (SPI and TWI (I2C)) 

 Great abundance of different types of peripheral circuits that implements 
synchronous serial interfaces (Flash, EEPROM, AD, DA, RTC, Display drivers, sensors 
etc.) 

3

SPI: Serial Peripheral Interface
 Synchronous Data Transfer

 Master/Slave configuration

 4-Line Bus

 Full Duplex operation

4

SCLK

MOSI

SS

MISO

SCLK

MOSI

SS

MISO

SPI Master SPI Slave
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SPI Master with Multiple Slaves

5

SPI Frame Transfer

6
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MicroWire ( Wire)
 Essentially a subset of SPI 

 SPI mode 0  (CPOL, CPHA) = (0, 0) 

 Often found in half duplex “three-wire mode” 

 Common bi-directional serial data line  only three wires needed (SIO, SCLK, CS) 

 Used in e.g. RTCs (real-time clocks) and serial EEPROMs

7

Task Based Programming

8
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Example: How are the tasks scheduled?

9

while (1)
{
 if (task1_timer == 0)  // if task1_timer is not already equal to 0,
    // it is being decremented every 1 millisecond
    // during a timer ISR
 {
  task1_timer = t1;
  task1();   // task1 takes m1 milliseconds
 }

 if (task2_timer == 0)  // if task2_timer is not already equal to 0,
    // it is being decremented every 1 millisecond
    // during a timer ISR
 {
  task2_timer = t2;
  task2();   // task2 takes m2 milliseconds
 }
}

Example Cont’d
 Suppose t1=5, m1=1, t2=10, and m2=15

 What is the frequency f1 in Hz at which task1() is called? 

 What is the frequency f2 in Hz at which task2() is called?

 Answer: 
 Since both task1_timer and task2_timer are decremented to 0 during the execution of task2(), task1() 

and task2() alternate. 

 Therefore, f1=f2 = 1 every 16 ms which is equal to 1000/16 Hz. 

10
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Example Cont’d
 Suppose t1=20, m1=1, t2=10, and m2=15 

 What is the frequency f1 in Hz at which task1() is called? 

 What is the average frequency f2 in Hz at which task2() is called?

 Answer: 
 Since task2_timer is decremented to 0 during the execution of task2(), task2() is called as often as 

possible. 
 When it is task1()'s turn to be executed, it takes more than one and less than two executions of 

task2_timer to get task1() decremented to 0. 
 Therefore, the execution pattern converges to a repetition of task2() (takes 15 ms), task2() (takes 15 

ms), task1() (takes 1 ms) giving 
 a frequency f_1=1000/31 Hz and 

 an average frequency f_2=2 * 1000/31.

11

Example Cont’d
 Suppose t1=20, m1=1, t2=25, and m2=15

 What is the frequency f1 in Hz at which task1() is called? 

 What is the frequency f2 in Hz at which task2() is called?

 Answer: 
 During the time that task2() is executed (which takes 15 ms), task1_timer (which initial value is 20) is 

decremented to a value v<=5. 
 The MCU will be idle for v ms after which task2_timer is decremented to 25-15-v and task1_timer just 

turned into 0. 
 So, after v ms task1() is executed taking 1ms during which task1_timer reduces to 19 and task2_timer 

reduces by 1 to 9-v. 
 The MCU will be idle for another 9-v ms after which task1_timer is equal to 10+v and task2_timer just 

turned into 0. 
 Now task2() is executed (which takes 15 ms) after which task1_timer is equal to 0 and task2_timer is equal 

to 10. 
 The same argument is now repeated for v=0 showing that the execution pattern converges to a repetition 

of task2() (takes 15 ms), task1() (takes 1 ms), idle time (takes 9 ms) giving 
 a frequency f_1=f_2=1000/25 Hz.

12
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Example Cont’d
 Suppose t1=4, m1=1, t2=8, and m2=4. 

 Assume initially task1_timer = 0 and task2_timer = t2

 What is the average frequency f1 in Hz at which task1() is called? 

 What is the average frequency f2 in Hz at which task2() is called?

 Answer: 
 Task 1 executes during the intervals [12n,12n+1], [12n+5,12n+6], for integers n>=0. 

 Task 2 executes during intervals [12n+8,12n+12] for integers n>=0. 

 This gives frequencies f_1=1000*2/12 Hz and f_2=1000/12 Hz.

13

Real Time OS
 What follows is extracted or copied from MIT 16.07 (Perry)

 What is an Operating System (OS)?

 Basic operating system design concepts

 What is a Real Time OS (RTOS)?

 Realtime Kernel Design Strategies

14
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What is an operating system?

15

OS Services

16
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What does an OS do?
 Manages computer system resources (processor, memory, I/O, etc.)

 Keeps track of status and “owner” of each resource

 Decides who gets resource

 Decides how long the resource can be in use

 In systems that support concurrent execution of programs, it
 Resolves conflicts for resources

 Optimizes performance given multiple users

17

Types of  operating systems
 Simplest = small kernel on embedded processor

 Most complex = full featured commercial OS
 Multi-user security

 Graphics support

 Networking support

 Peripherals communication

 Concurrent execution of programs

18
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OS Hierarchy

19

OS Hierarchy

20Taken from http://www.cloudbus.org/~raj/
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Tasks & Functions
 A task is a process that repeats itself

 Loop forever

 Essential building block of real time software systems

 A function is a procedure that is called. Once called, it runs and then exits possibly 
returning a value.

21

RTOS
 Often RTOS = OS Kernel

 An embedded system is designed for a single purpose so the user shell and file/disk 
access features are unnecessary

 RTOS gives you control over your resources
 No background processes that “just happen”

 Bounded number of tasks

 RTOS gives you control over timing by allowing:
 Manipulation of task priorities

 Choice of scheduling options

22
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Components OS Kernel
 Task Scheduler: To determine which task will run next in a multitasking system

 Task Dispatcher: To perform necessary bookkeeping to start a task

 Intertask Communication: To support communication between one process (i.e. task) 
and another

23

Realtime Kernel Design Strategies
 Polled Loop Systems

 Interrupt Driven Systems

 Multi-Tasking

 Foreground/Background Systems

24
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Polled Loops
 Simplest RT kernel

 A single and repetitive instruction tests a flag that indicates whether or not an event 
has occurred
 Examples: Non-blocking LCD instructions, Non-blocking “get string” over the UART channel

 No intertask communication or scheduling needed. Only single tasks exist

 Excellent for handling high-speed data channels, especially when
 Events occur at widely spaced intervals and

 Processor is dedicated to handling the data channel

25

Polled Loops
 Pros:

 Simple to write and debug

 Response time easy to determine (as compared to our task-based programming example with two 
rather than a single task)

 Cons:
 Can fail due to burst of events

 Generally not sufficient to handle complex systems

 Waste of CPU time, especially when event being polled occurs infrequently

26
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Using Polled Loops
 Often used inside other real time schemes to, e.g., 

 Poll a suite of sensors for data

 Check for user inputs (keyboard, keypad, UART data)

 Opposite of interrupt driven systems

27

What is an Interrupt (recap)?
 A HW signal that initiates and event

 Upon receipt of an interrupt, the processor
 Completes the instruction being executed

 Saves the program counter (so as to return to the same execution point)

 Loads the program counter with the location of the interrupt handler code (ISR)

 Executes the interrupt handler (ISR)

 In practice, real time systems can handle several interrupts in priority fashion
 Interrupts can be enabled/disabled (By setting appropriate registers.)

 Highest priority interrupts serviced first (Which ones have the highest priority in Atmega328P?)

 Processor must check for interrupts very frequently: If any have arrived, it stops 
immediately and runs the associated ISR
 Processor repeats: do one operation; check interrupts; if interrupts then suspend task and run ISR

28
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ISR
 ISR is a program run in response to an interrupt

 Disables all interrupts

 Clears the interrupt flag that got it called

 Runs code to service the event

 Re-enables interrupts

 Exits so the processor can go back to its running task

 Should be as fast as possible, because nothing else can happen when an interrupt is 
being serviced (when interrupts happen very frequently, tasks are being stalled and 
progress very slowly, in the worst case one instruction per ISR)

 Interrupts can be
 Prioritized (service some interrupts before others)

 Disabed (processor doesn’t check or ignores all of them)

 Masked (processor only sees some interrupts)

29

Examples interrupt-driven system

30
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Copied from Lab 6c, ECE3411 – Fall 2015, by 
Marten van Dijk and Syed Kamran Haider

SPI: Serial Peripheral Interface
The SPI bus specifies four logic signals:

 SCLK : Serial Clock (output from master).

 MOSI : Master Output, Slave Input (output from master).

 MISO : Master Input, Slave Output (output from slave).

 SS : Slave Select (active low, output from master).

2

SCLK

MOSI

SS

MISO

SCLK

MOSI

SS

MISO

SPI Master SPI Slave



11/6/2017

2

SPI Master & Slaves
 The SPI bus can operate with a single Master 

device and with one or more Slave devices.

 In case of multiple slaves, the master selects the 
slave device with a logic 0 on the select (SS) line.

 During each SPI clock cycle, the master sends a bit 
on the MOSI line and the slave reads it, while the 
slave sends a bit on the MISO line and the master 
reads it. 

 This sequence is maintained even when only one-
directional data transfer is intended.

3

SPI Data Modes
 There are four combinations of SCK phase and polarity with respect to serial data, 

which are determined by control bits CPHA and CPOL.

4
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SPI Frame Transfer with CPHA=0

5

SPI Frame Transfer with CPHA=1

6
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SPI Master Example

7

void SPI_MasterInit(void)
{
 /* Set SS, MOSI and SCK output, all others input */
 DDR_SPI = (1<<DD_SS) | (1<<DD_MOSI) | (1<<DD_SCK);
 /* Enable SPI, Master, set clock rate fck/128 */
 SPCR = (1<<SPE) | (1<<MSTR) | (1<<SPR1) | (1<<SPR0);
}

uint8_t SPI_Master_Transceiver(uint8_t cData)
{
 PORTB &= ~(1<<SPI_SS); // Pull Slave_Select low
 SPDR = cData;  // Start transmission
 while( !(SPSR & (1<<SPIF)) ); // Wait for transmission complete
 PORTB |= (1<<SPI_SS); // Pull Slave Select High
 return SPDR;  // Return received data
}

Note:
DDR_SPI in the examples must be replaced by the actual Data Direction Register controlling the SPI pins.
DD_SS, DD_MOSI, DD_MISO and DD_SCK must be replaced by the actual data direction bits for these pins. 
E.g. if MOSI is placed on pin PB3, replace DD_MOSI with DDB3 and DDR_SPI with DDRB.
SPI_SS should be replaced with actual bit position of SS pin in the port corresponding to SPI pins.

SPI Slave Example

8

void SPI_SlaveInit(void)
{
 /* Set MISO output, all others input */
 DDR_SPI = (1<<DD_MISO);
 /* Enable SPI */
 SPCR = (1<<SPE);
}

uint8_t SPI_SlaveReceive(void)
{
 /* Wait for reception complete */
 while(!(SPSR & (1<<SPIF)));
 /* Return Data Register */
 return SPDR;
}

Note:
DDR_SPI in the examples must be replaced by the actual Data Direction Register controlling the SPI pins.
DD_MOSI, DD_MISO and DD_SCK must be replaced by the actual data direction bits for these pins. 
E.g. if MOSI is placed on pin PB5, replace DD_MOSI with DDB5 and DDR_SPI with DDRB.
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Important Notes
 On Xplained Mini, ATmega328P is programmed by ATmega32U4

 Programming in ISP mode and/or enabling/disabling fuses uses SPI bus.

 If you program in ISP mode, you’ll need to restart Atmel Studio every time you 
program the ATmega328P.

 Therefore, use debugWire interface to program the ATmega328P for this lab.

 REMEMBER: debugWire interface requires DWEN fuse to be enabled, which is done 
over SPI bus between ATmega32U4 and ATmega328P. 
Therefore, if you plan to connect MOSI and MISO pins together to perform 
loopback testing of SPI, do so only after entering into debugWire interface and 
programming the ATmega328P at least once. This will enable the DWEN fuse 
before the SPI pins MOSI and MISO are shorted together.

9

Task1: SPI Loopback Testing
Write a simple program to test SPI in loopback mode. In particular:

 Configure SPI in Master mode

 Read a potentiometer’s voltage through ADC every 100ms (only upper 8 bits).

 Transmit the byte containing voltage reading over SPI.

 Loopback the transmitted byte by connecting MOSI and MISO pins together according 
to the instructions given on previous slide.

 Print on LCD the byte value received over SPI.

10
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Task2: SPI Master Slave Communication 
Extend Task1 so that you can exchange voltage readings between yours and your 
friend’s board over SPI bus.

 Configure your board as SPI Master and ask your friend to configure his as SPI Slave.

 Make proper wire connections of SS, SCK, MOSI and MISO pins between the two 
boards.

 The slave MCU should read its ADC value and write it to SPDR register every 50ms.

 Transmit Master’s voltage value every 100ms. This will also result in receiving the last 
voltage value written in SPDR register in the slave MCU.

 For both Master and Slave, print both transmitted and received values on LCD.

Homework: Use SPI interrupts on both Master and Slave sides for non-blocking SPI 
communication.

11
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Real Time Operating Systems Cont’d
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Copied from Lecture 6a and Lecture 7b, ECE3411 – Fall 2015, 
by Marten van Dijk and Syed Kamran Haider

Slides on RTOS are extracted or copied from MIT 16.07 (Smith) and
“Embedded Software Architecture”, Cook & Freudenberg, 2008.

Realtime Kernel Design Strategies
 Polled Loop Systems

 Interrupt Driven Systems

 Multi-Tasking

 Foreground/Background Systems

2
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Polled Loops
 Simplest RT kernel

 A single and repetitive instruction tests a flag that indicates whether or not an event 
has occurred
 Examples: Non-blocking LCD instructions, Non-blocking “get string” over the UART channel

 No intertask communication or scheduling needed. Only single tasks exist

 Excellent for handling high-speed data channels, especially when
 Events occur at widely spaced intervals and

 Processor is dedicated to handling the data channel

3

Examples interrupt-driven system

4
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Multitasking
 Separate tasks that share one processor (or processors)

 Each task executes within its own context
 Owns processor

 Sees its own variables

 May be interrupted

 Tasks may interact to execute as a whole program

5

Example

6

Mailbox is a circular 
buffer with a read and 
a write pointer
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Context Switching
 When the CPU switches from one task to running another, its is said to have switched 

contexts

 Save the minimum needed to restore the interrupted process
 Contents of registers

 Contents of the program counter

 Contents of coprocessor registers (if applicable)

 Memory page registers

 Memory-mapped I/O

 Special variables

 During context switching, interrupts are often disabled

 Real time systems require minimal times for context switches

7

Multitasking
 How do many tasks share the same CPU?

 Cyclic executive systems

 Round robin systems

 Pre-emptive priority systems

8
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Cyclic Executive Systems
 Calls to statically ordered threads

 Pros
 Easy to implement (used extensively in complex safety critical systems)

 Cons
 Not efficient in overall usage of CPU processing

 Does not provide optimal response time

9

Round Robin Systems
 Several processes execute sequentially to completion

 Often in conjunction with a cyclic executive

 Each task is assigned a fixed time slice

 Fixed rate clock initiates an interrupt at a rate corresponding to the time slice
 Task executes until it completes or its execution time expires

 Context saved if task does not complete

 Just like our task-based programming without fixed times slices per task

10
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Pre-emptive Priority Systems
 Higher priority task can preempt a lower priority task if it interrupts the lower-

priority task

 Priorities assigned to each interrupt are based upon the urgency of the task 
associated with the interrupt

 Priorities can be fixed or dynamic

11

Example: Aircraft Navigation System
- High Priority: Task that checks accelerometer 

data every 5ms
- Medium Priority: Task that collects gyro data 

and compensates this data and the 
accelerometer data every 40ms

- Low Priority: Display update, Built-in-Test (BIT)

Problems Multitasking
 High priority tasks hog resources and starve low priority tasks

 Low priority tasks share a resource with high priority tasks and block high priority 
tasks

 How does a RTOS deal with some of these issues?
 Rate Monotonic Systems (higher execution frequency = higher priority)

 Priority Inheritance

12
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Priority Inversion / Priority Inheritance
 Task A and Task C share a resource

 Task A is high priority

 Task C is low priority

 Task A is blocked when Task C runs (effectively assigning A to C’s priority, hence 
priority inversion)

 Task A will be blocked for longer, if Task B of medium priority comes along to keep 
Task C from finishing

 A good RTOS would sense this condition and temporarily promote Task C to the high 
priority of Task A (Priority Inheritance)

13

Priority Inversion / Priority Inheritance

14
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Foreground/Background Systems
 Most common hybrid solution for embedded applications

 Involve interrupt driven (foreground) AND noninterruptive driven (background) 
processes

 All realtime solutions are just a special case of foreground/background systems
 Polled loops = background only system

 Interrupt-only systems = foreground only system

 Anything not time-critical should be in background
 Background is process with lowest priority

15

Foreground/Background Systems
 Gives hybrid systems = combining what we have seen so far

 Polled loops

 Interrupt-driven systems

 Multi-tasking
 Pre-emptive priority or

 Round robin or

 Cyclic executive

16
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Back to the multitasking example

17

Multitasking Pros & Cons
 Pros

 Segments the problem into small, manageable piece (modular computer system design principle)

 Makes more modular software (can reuse portions more easily)

 Allows software designer to prioritize certain tasks over others

 Cons
 Depending upon implementation, timing may not be deterministic (jitter caused by variations in timing 

of incoming data)

 Context switching adds overhead

18
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Full Featured RTOS
 Expand foreground/background solution

 Add network interfaces

 Add device drivers

 Add complex debugging tools

 Most common choice for complex systems

 Many commercial operating systems available

19

Choosing a RTOS approach
 How do you know which one is right for your application?

 Look at what is driving your system (arrival pattern of data)
 Irregular (known but varying sequence of intervals between events)

 Bursty (arbitrary sequence with bound on number of events)

 Bounded (minimum interarrival interval)

 Bounded with average rate (unpredictable event times, but cluster around mean)

 Unbounded (statistical prediction only)

 What is the critical I/O?

 Are there absolute hard deadlines?

20
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Choosing a RTOS approach

21

Choosing a RTOS approach

22
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DAC: Digital to Analogue Conversion

Lab 5b.

With the help of:
www.wikipedia.org
ATmega328P Datasheet

Copied from Lab 6c, ECE3411 – Fall 2015, by 
Marten van Dijk and Syed Kamran Haider

DAC: Digital to Analog Converter
We use an external DAC for this lab: MCP4921

 12 bit resolution.

 SPI interface.

2

1 VDD Positive Power Supply Input (2.7V to 5.5V)

2 CS Chip Select Input. (SPI Slave Select)

3 SCK SPI Serial Clock Input

4 SDI SPI Serial Data Input (MOSI)

5 LDAC Synchronization input used to transfer DAC settings 
from serial latches to the output latches.

6 VREFA DACA Voltage Input (AVSS to VDD)

7 AVSS Analog ground

8 VOUTA DACA Output
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DAC SPI Interface
MCP4921 acts as SPI Slave and only receives data  MISO is not connected.

 Connect the ATmega328P with MCP4921 as shown in the figure below.

 Notice that LDAC pin also needs to be connected to a GPIO pin on ATmega328P.

3

SCLK

MOSI

PB0

SS

SCK

SDI

LDAC

SS

ATmega328P MCP4921

V

V

AV

V

5V

GND

Output

DAC SPI Frame Format

4

 MCP4921 receives a 16-bit word from the MCU in two 8-bit SPI transactions.

 The format of the 16-bit frame containing 4 command and 12 data bits is shown 
below.
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DAC Command Bits

5

 The upper 4 bits of the 16 bit word are DAC command bits.

 The description of the 16 bit frame bits is as follows:

DAC SPI Interface Timing
 The figure below shows the timing of one SPI transaction (command + data) 

between the MCU and DAC.

 You need to implement the same timing through SPI interface on ATmega328P.

6
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Task: Controlling LED Glow
Write a simple program to control the glow of a LED using DAC. 

In particular:

 Configure the SPI in Master mode.

 Read a potentiometer’s voltage through ADC every 100ms (full 10 bit resolution).

 Normalize the 10-bit ADC reading to a 12-bit digital value for DAC.

 Transmit the 4-bit command and 12-bit data value to DAC over SPI.

 Don’t forget to generate a LOW pulse at LDAC pin after transmission.

 Print the ADC’s and DAC’s readings on LCD.

Homework: Use DAC to generate a 100Hz sine wave with a peak-to-peak amplitude of 
5V.

7
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I2C
RedBot & DC Motor
Servo Motor Control

Lec5c.

Slides on I2C and Servo Motor Control copied from Lecture 7b, 
ECE3411 – Fall 2015, by Marten van Dijk and Syed Kamran Haider
Slides on RedBot adapted from Wikipedia and “RedBot Project” 
offered by Sung Yuel Park in Spring 2016

I2C: Inter Integrated Circuit bus
 Also known as Two Wire Interface (TWI)

 Allows up to 128 different devices to be connected using only two bi-directional bus lines, 
one for clock (SCL) and one for data (SDA).

 All devices connected to the bus have individual addresses.

2
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I2C START and STOP Conditions
 START and STOP conditions are signaled by changing the level of the SDA line when 

the SCL line is high.

 When a new START condition is issued between a START and STOP condition, this is 
referred to as a REPEATED START condition

3

I2C Address Packet Format
 All address packets transmitted on the TWI bus are 9 bits long: 

 7 address bits, one READ/WRITE control bit and an acknowledge bit.

 When a Slave recognizes that it is being addressed, it should acknowledge by 
pulling SDA low in the ninth SCL (ACK) cycle.

 The Master can then transmit a STOP condition (by pulling SDA high), or a REPEATED 
START condition to initiate a new transmission.

4
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I2C Data Packet Format
 All data packets transmitted on the TWI bus are 9 bits long:

 One data byte and one acknowledge bit.

 An Acknowledge (ACK) is signaled by the Receiver pulling the SDA line low during 
the ninth SCL cycle. If the Receiver leaves the SDA line high, a NACK is signaled.

5

I2C Bus Arbitration
 Arbitration is carried out by all masters (any device can become a master) continuously 

monitoring the SDA line after outputting data.

 If the value read from the SDA line does not match the value the Master had output, it has 
lost the arbitration.

6
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RedBot Project
Titles AVR Functions Additional HW SW Scenario

Line Follower ADC, PWM, GPIO, 
UART

IR Sensor, H-bridge 
driver

Based on IR sensor input, 
RedBot needs to move 
along a line (black 
electrical tape)

7

PID Control
 A proportional–integral–derivative controller (PID controller) is a control loop feedback mechanism 

(controller) commonly used in industrial control systems. 

 It continuously calculates an error value e(t) as the difference between a desired set-point and a 
measured process variable and applies a correction based on proportional, integral, and derivative 
terms.
 e(t) = |(max possible “blackness” measured by the line sensor) – (currently measured “blackness” by the line sensor) |

 u(t) =  is the correcting rotation speed of the vehicle (measured as the duty cycle)

8

Proportional Term Integral Term Derivative Term
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H Bridges
 An H bridge enables a voltage to be applied across a load in either direction. It is 

widely used in robotics to allow DC motors to run forwards or backwards.

9

Go forward Go backward

In RedBot, the control signals of an H bridge will be derived from two GPIO signals and a PWM 
signal. The two GPIO signals control how this motor is connected in this H bridge, and the duty 
cycle of the PWM signal controls how often it is connected. So, GPIOs control the direction, and 
PWM signal controls the speed. 

Servo Motor
 A Servo is a small device that has an output shaft that can 

be positioned to specific angular positions based on input 
PWM signal.

 The servo motor has a potentiometer that is connected to 
the output shaft and allows the control circuitry to monitor 
the current angle of the servo motor.

 A normal servo is used to control an angular motion of 
between 0 and 180 degrees.

10
Ref: http://lizarum.com/assignments/physical_computing/2008/servo.html
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Servo Motor Applications
 Servos are typically used to control elevators, 

rudders and ailerons.

11

Image Refs: http://www.greatplanes.com/discontinued/gpma1414.html
http://www.rc-airplane-world.com/rc-airplane-controls.html

Controlling the servo
 The servo is controlled using a 50 Hz PWM signal (i.e. signal period = 20 ms)

 The angle of the servo is determined by the pulse width (i.e. the duty cycle)
 1.5ms corresponds to the center position.

 By varying the pulse width, we can control the angle

 The pulse width must never be outside the range 0.9 to 2.1ms

12
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Connecting the servo
 Typically the servo connectors have 

3 wires which should be connected 
as follows:
 Red  VCC (+5V)

 Black  GND (0V)

 Yellow  PWM signal

13
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I2C: Inter Integrated Circuit

Lab5c

With the help of:
ATmega328P Datasheet

I2C: Inter Integrated Circuit
 Also known as Two Wire Interface (TWI)

 Allows up to 128 different devices to be connected using only two bi-directional bus lines, 
one for clock (SCL) and one for data (SDA).

 A pull-up resistor (typically 10 kΩ) is needed for each of the TWI bus lines.

 All devices connected to the bus have individual addresses.

2

10 kΩ10 kΩ
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I2C Terminologies
 I2C (TWI) protocol allows several devices (up to 128) to be connected.

 Each device is identified by a configurable 7-bit address.

 Each device can communicate with any other device
 The transmitter address the receiver by its 7-bit address.

3

I2C START and STOP Conditions
 START and STOP conditions are signaled by changing the level of the SDA line when 

the SCL line is high.

 When a new START condition is issued between a START and STOP condition, this is 
referred to as a REPEATED START condition

4
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I2C Address Packet Format
 All address packets transmitted on the TWI bus are 9 bits long: 

 7 address bits, one READ/WRITE control bit and an acknowledge bit.

 When a Slave recognizes that it is being addressed, it should acknowledge by 
pulling SDA low in the ninth SCL (ACK) cycle.

 The Master can then transmit a STOP condition, or a REPEATED START condition to 
initiate a new transmission.

5

I2C Data Packet Format
 All data packets transmitted on the TWI bus are 9 bits long:

 One data byte and one acknowledge bit.

 An Acknowledge (ACK) is signaled by the Receiver pulling the SDA line low during 
the ninth SCL cycle. If the Receiver leaves the SDA line high, a NACK is signaled.

6
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I2C Bus Arbitration
 Arbitration is carried out by all masters continuously monitoring the SDA line after outputting 

data.

 If the value read from the SDA line does not match the value the Master had output, it has 
lost the arbitration.

7

A typical I2C Transmission

8
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A typical I2C Transmission Summary
 When the TWI has finished an operation and expects application response, the 

TWINT Flag is set. The SCL line is pulled low until TWINT is cleared.

 When the TWINT Flag is set, the user must update all TWI Registers with the value 
relevant for the next TWI bus cycle. As an example, TWDR must be loaded with the 
value to be transmitted in the next bus cycle.

 After all TWI Register updates and other pending application software tasks have 
been completed, TWCR is written. When writing TWCR, the TWINT bit should be 
set. 

 Writing a one to TWINT clears the flag. The TWI will then commence executing 
whatever operation was specified by the TWCR setting.

9

I2C Transmission Example

10

uint8_t TWI_Master_Transmit(uint8_t Address, uint8_t Data)
{
 TWCR = (1<<TWINT)|(1<<TWSTA)|(1<<TWEN); // Send START condition
 while (!(TWCR & (1<<TWINT)));   // Wait for TWINT Flag set.
 if ((TWSR & 0xF8) != START)   // Check value of TWI Status Register.
  ERROR();
 TWDR = (Address << 1) | (WRITE);   // Load SLA_W (Slave Address & Write) into TWDR Register.
 TWCR = (1<<TWINT) | (1<<TWEN);  // Clear TWINT bit in TWCR to start transmission of address.
 while (!(TWCR & (1<<TWINT)));   // Wait for TWINT Flag set.
 if ((TWSR & 0xF8) != MT_SLA_ACK)   // Check value of TWI Status Register.
  ERROR();
 TWDR = Data;    // Load DATA into TWDR Register.
 TWCR = (1<<TWINT) | (1<<TWEN);  // Clear TWINT bit in TWCR to start transmission of data.
 while (!(TWCR & (1<<TWINT)));   // Wait for TWINT Flag set.
 if ((TWSR & 0xF8) != MT_DATA_ACK)   // Check value of TWI Status Register.
  ERROR();
 TWCR = (1<<TWINT)|(1<<TWEN)| (1<<TWSTO); // Transmit STOP condition.
}

Note: The code above assumes that several definitions have been made, for example by using include-files.
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I2C Reception Example

11

uint8_t TWI_Slave_Receive(void)
{
 TWCR = (1<<TWEA)|(1<<TWEN);   // Enable TWI & Acknowledgements.
 while (!(TWCR & (1<<TWINT)));   // Wait for TWINT Flag set (once this slave is addressed)
 if ((TWSR & 0xF8) != 0x60)   // Check value of TWI Status Register.
  ERROR();
 TWCR = (1<<TWINT) | (1<<TWEN);  // Clear TWINT bit start reception of data.
 while (!(TWCR & (1<<TWINT)));   // Wait for TWINT Flag set.
 if ((TWSR & 0xF8) != 0x80)   // Check if Data has been received & ACK has been returned
  ERROR();
 TWCR = (1<<TWINT) | (1<<TWEN);  // Clear TWINT bit.
 return TWDR;    // Read TWDR Register.
}

Note: The code above assumes that several definitions have been made, for example by using include-files.

void TWI_Slave_Initialize(uint8_t Address)
{
 TWAR = (Address << 1)|(1);  // Load Slave Address into TWAR Register.
 TWCR = (1<<TWEA)|(1<<TWEN);  // Enable TWI & Acknowledgements.
}

Task1: I2C Master Slave Communication 
Write a program to send ADC voltage readings to your friend’s board over I2C bus.

 Configure your board as I2C Master (fSCL = 200kHz) and ask your friend to configure his as I2C 
Slave.

 Make proper wire connections of SCK and SDA pins between the two boards. 
Don’t forget to put a 10 kΩ pullup resister on each line.

 In Master MCU, read a potentiometer’s voltage through ADC every 100ms (only upper 8 bits).

 Transmit Master’s voltage value every 100ms. 

 For Master, print the transmitted reading on UART.

 For Slave, print the received reading on UART.

Homework: Use I2C interrupts on both Master and Slave sides for non-blocking I2C 
implementation.

12
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1. [18 points]:The following code tries to implement a 1kHz PWM signal whose duty cycle is varied
in way that it results in 10Hz sawtooth waveform. The MCU clock frequency is 16MHz. List all the
bugs that you can identify in this code, and mention how would you fix them.

uint16_t step = 80;

uint16_t time_period = 16000;

uint16_t duty_cycle = 0;

void main(void)

{

/* Configuring Timer 1 for PWM generation */

OCR1A = time_period-1;

OCR1B = duty_cycle;

TCCR1A |= (1<<WGM11) | (1<<WGM10); // turn on Fast PWM mode

TCCR1B |= (1<<WGM13) | (1<<WGM12); // turn on Fast PWM mode

TIMSK1 |= (1<<OCIE1B); // Enable Interrupt

TCCR1B |= (1<<CS10); // Set pre-scaler @ 1

while(1); // Nothing to do

}

ISR(TIMER0_COMPA_vect)

{

duty_cycle += step;

duty_cycle = duty_cycle % (time_period-1);

OCR1B = duty_cycle;

}

// ----------------------------------------------------------------

Initials:
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2. [20 points]: Answer the following short questions:

a. Why is 128 the maximum number of devices that can be connected together in one I2C network?

b. In task 1 of Lab 5c, you were required to establish communication between two MCUs via I2C.
What wire connections were needed?

c. How many wires does the SPI protocol use?

d. Building on to part(c), what is each wire used for?

Initials:
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3. [16 points]: Encircle the correct answer for the following:

a. SPI and I2C protocols are:

(a) Asynchronous
(b) Synchronous
(c) None of the above

b. SPI and I2C protocols:

(a) SPI is half duplex whereas I2C is full duplex.
(b) SPI is full duplex whereas I2C is half duplex.
(c) Both SPI and I2C are full duplex.
(d) Both SPI and I2C are half duplex.

c. Suppose a SPI Slave wants to send 2 byes of data to a SPI Master. Select the correct statement from
the following:

(a) Slave initiates SPI communication by itself and sends 2 bytes of data.
(b) Slave asks the Master to initiate SPI communication and then sends 2 bytes of data to Master.
(c) Master initiates SPI communication by itself and sends 2 bytes of data to Slave.
(d) None of the above

d. Which one is correct for transferring a data byte from an I2C Master to Slave:

(a) Master sends Address, Slave ACKs, Master sends Data, Slave ACKs.
(b) Slave sends Address, Master ACKs, Master sends Data, Slave ACKs.
(c) Slave requests Address, Slave ACKs, Master sends Data, Master ACKs.
(d) None of the above

Initials:
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4. [16 points]:

a. What is context switching? List at least three kinds of data which needs to be saved in a context
switch.

b. What is the mechanism (as explained in lecture) behind controlling the angle of a servo motor using
one PWM signal control?
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5. [20 points]: Earliest Deadline First (EDF) algorithm schedules the task whose deadline is closest
in time.
Complete the following chart according to non-preemptive version of Earliest Deadline First (EDF)
scheduling algorithm. The task specifications are given in the following table.

Task Required CPU Time (ms) Task Period (ms)
Task A 1 6
Task B 2 5
Task C 4 10

The upward arrows (↑) in the chart show that the task is ready to be scheduled. Hence each next arrow
also represents the deadline of the task needed to be executed in the previous period.

Time

Task A

5 10 15 20

Task B

0 25 30 35

Task C

Figure 1: EDF Scheduling Chart.
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6. [10 points]: Can you shortly describe what you have learned and feel confident about using in the
future?

End of Problem Set
Initials:
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1. [20 points]: Below is a program layout with comments explaining what happens during program
execution. Also the meaning of all register initializations is given (there is no need to look into the
ATmega328P data sheet).

You should pay attention to the main body which initializes Timer1, and polls its value before an ADC
measurement in sleep mode starts and after the execution of an ”ADC task” finishes. The difference
of the two values is converted to micro seconds and added to a variable busy. The goal for busy is to
measure the time during which the MCU is doing ”useful” work. The code that is related to busy is
highlighted with vertical bars.

After the program layout below, the first subproblem asks you what is truly measured by busy in the
program and the second subproblem asks you to explain the code which converts the difference to micro
seconds.

... we assume a clock frequency of 20MHz ...

... inclusion of packages ...

... declaration of global variables ...

// ------------------------------------------------- //

ISR (TIMER0_COMPA_vect)

{

/* Update task timer */

if (taskADC_timer >0 ) {--taskADC_timer;}

}

// ------------------------------------------------- //

ISR (ADC_vect)

{

/* Read a 10-bit conversion */

AinLow = (int)ADCL;

Ain = (int)ADCH*256;

Ain = Ain + AinLow;

}

// ------------------------------------------------- //

void taskADC(void)

{

/* Reset task timer */

taskADC_timer = 400;

//Convert Ain into a voltage

voltage = ((1.0*Ain)/1024.0)*5.0;

... Some more computation: sometimes taking more and sometimes taking less time ...

... However, no matter how long taskADC() takes, its execution is always <= 200 ms ...

}

Initials:
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int main(void)

{

... initialization variables ...

| // set up timer 1 for 3.2 micro second counter increments

| TCCR1B = 3; //set prescalar to divide by 64

//set up timer 0 such that ISR(TIMER0_COMPA_vect) is called every 1 milli second

OCR0A = 77; //Set the compare reg to 78 time ticks

TIMSK0 = (1<<OCIE0A); //Turn on timer 0 cmp match ISR

TCCR0B = 4; //Set prescalar to divide by 256

TCCR0A = (1<<WGM01); //Turn on clear-on-match

// initialize the ADC

ADMUX = 6; // Select ADC Channel 6

ADCSRA = (1<<ADEN) | (1<<ADIE) + 7 ; // Enable AD converter, enable its interrupt,

// set prescalar (notice that the ADSC bit is

// not set, so no ADC conversion is started)

SMCR = (1<<SM0) ; // Choose ADC sleep mode

sleep_enable();

sei();

while (1)

{

if (taskADC_timer == 0)

{

| // Measure timer 1

| T1poll_before = TCNT1;

//Perform an ADC measurement in sleep mode, and execute taskADC

sleep_cpu();

taskADC();

| //Measure timer 1 again and update busy with the amount of micro seconds that

| //have passed: every TCNT1 to TCNT1+1 increment takes 3.2 micro seconds.

| T1poll_after = TCNT1;

|

| if (T1poll_after > T1poll_before) {

| busy += (T1poll_after - T1poll_before)*3.2;

| } else {

| busy += ( (T1poll_after - T1poll_before) + 65536 ) * 3.2;

| }

} /* end of if (taskADC_timer == 0) */

} /* end of while(1) */

} /* end of main() */

Initials:
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The data sheet (section 9.4) writes for the ADC Noise Reduction Mode that ”... the SLEEP instruction
makes the MCU enter ADC Noise Reduction mode, stopping the CPU but allowing the ADC, the ex-
ternal interrupts, 2-wire Serial Interface address match, Timer/Counter2 and the Watchdog to continue
operating (if enabled) ...”. This means that all other hardware modules stop working, in particular, the
other timers/counters stop incrementing.

A. (16 points) Answer with ”never”, ”sometimes”, or ”always”, whether the execution times (mea-
sured in micro seconds) of the following procedures are added into busy variable. Explain your
answers.

(a) ISR(TIMER0 COMPA vect)

(b) ISR(ADC vect)

(c) sleep cpu()

(d) taskADC()

Initials:
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B. (4 points) The program assumes that taskADC() always takes ≤ 200 ms. Use this assumption to
explain why the code

if (T1poll_after > T1poll_before) {

busy += ( T1poll_after - T1poll_before ) * 3.2;

} else {

busy += ( (T1poll_after - T1poll_before) + 65536 ) * 3.2;

}

correctly adds to busy the time in micro seconds that passed between the polling of T1poll before
and the polling of T1poll after.

Initials:
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2. [30 points]: Table 1 shows the characteristics of four tasks that need to be scheduled on the MCU.

“Ready Time” indicates when the corresponding task is ready to execute. In this example, all the tasks
are ready and want to execute as soon as the system starts, i.e. at time 0. “Required CPU Time”
indicates how many time units are needed for the task to finish.

Table 1: Task Specifications

Task Ready Time Required CPU Time
A 0 10
B 0 1
C 0 3
D 0 4

The following figure shows an example of First Come First Serve scheduling of these tasks assuming
the order A, B, C, and then D.

Time

Task A

5 10 15 20

Task B

Task C

0

Task D

The following table shows the completion times of the tasks and their corresponding wait times (i.e.
while the task is suspended and waiting for the CPU) under First Come First Serve scheduling scheme.

Table 2: Analysis under First Come First Serve Scheduling

Task Ready Time Required CPU Time Completion Time Wait Time
A 0 10 10 0
B 0 1 11 10
C 0 3 14 11
D 0 4 18 14

Average 13.25 8.75
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A. Round Robin Scheduling: (15 points)
Plot how the tasks A, B, C, and D will be scheduled on the CPU under Round Robin Scheduling with
a time slice of 1 time unit. I.e. assuming an order of A, B, C, and D; the tasks take turns for the CPU
and each task gets the CPU for 1 time unit in each turn until the task finishes. Assume that no time is
wasted in context switching between the tasks.

Time

Task A

5 10 15 20

Task B

Task C

0

Task D

Use the plot above to complete the following table.

Table 3: Analysis under Round Robin Scheduling

Task Ready Time Required CPU Time Completion Time Wait Time
A 0 10
B 0 1
C 0 3
D 0 4

Average
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B. Shortest Remaining Time First Scheduling: (15 points)
Plot how the tasks A, B, C, and D will be scheduled on the CPU under Shortest Remaining Time First
Scheduling. I.e. whichever task needs the shortest amount of CPU time to finish gets the CPU first.
Once this task is finished, another task that needs the smallest CPU time is executed. Assume that no
time is wasted in scheduling a new task once a task finishes.

Time

Task A

5 10 15 20

Task B

Task C

0

Task D

Use the plot above to complete the following table.

Table 4: Analysis under Shortest Remaining Time First Scheduling

Task Ready Time Required CPU Time Completion Time Wait Time
A 0 10
B 0 1
C 0 3
D 0 4

Average
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3. [30 points]: Consider the following while loop in the main code:

/* If not already equal to 0, task1_timer and task2_timer

are decremented every 1 millisecond in a timer ISR */

task1_timer = 0; // Initializing. task1 is ready to execute

task2_timer = 0; // Initializing. task2 is ready to execute

while (1)

{

if (task1_timer == 0) // if task1 is ready to run.

{

task1_timer = t1;

task1(); // task1 takes m1 milliseconds to execute.

}

if (task2_timer == 0) // if task2 is ready to run.

{

task2_timer = t2;

task2(); // task2 takes m2 milliseconds to execute.

}

}

Suppose if t1=5, m1=1 and t2=20, m2=15 then the corresponding execution pattern is shown below:

Time

task1()

5 10 15 20

task2()

0 25 30 35

Here task1() executes for 1 ms, task2() executes for 15 ms, and the MCU is idle for 4 ms. The same
pattern starts getting repeated over and over.

In this example pattern, task2() is executed once per 21 ms (a frequency of 1/(21 ms)) and task1()
is executed on average two times per 21 ms (an average frequency of 2/(21 ms)).

Similar to the above mentioned example, answer the following questions.
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A. Suppose t1=5, m1=1, t2=10, and m2=15.
Draw the execution pattern of the two tasks.

Time

task1()

5 10 15 20

task2()

0 25 30 35

What is the frequency f1 in Hz at which task1() is called?
What is the frequency f2 in Hz at which task2() is called?

B. Suppose t1=20, m1=1, t2=10, and m2=15.
Draw the execution pattern of the two tasks.

Time

task1()

5 10 15 20

task2()

0 25 30 35

What is the frequency f1 in Hz at which task1() is called?
What is the average frequency f2 in Hz at which task2() is called?
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4. [20 points]:The robot shown below is a RedBot that you will be using in the last lab. It is a line
follower which can follow a black line. It has three line sensors in the front encircled by the dashed
line. Write a function to control the movement of this RedBot with the help of the given functions.

The functions you can use are:

• void left wheel forward(void);

• void left wheel backward(void);

• void right wheel forward(void);

• void right wheel backward(void);

The inputs of your program are the values sampled by three line sensors. For each line sensor, suppose
that it reads more than T when it is over the black line. And assume the black line is as thick as a single
sensor. Fill the program below.

void redbot_control(int left_sensor, int middle_sensor, int right_sensor)

{

}

Initials:



ECE 3411 Fall 2017, Problem Set A5 Page 12 of 12

End of Problem Set
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1. [Pass/Fail points]: In this task, you need to implement non-preemptive version of
Shortest Remaining Time First scheduling for a given set of periodic tasks. The task specifications
are given in the following table.

Table 1: Task Specifications

Task Required CPU Time (ms) Task Period (ms)
task 0() 400 1000
task 1() 200 500
task 2() 100 600

You are provided with a C source file named scheduling SW.c which provides a framework to run
these tasks.

You need to implement the function called SRTF scheduler() such that it schedules the tasks w.r.t.
shortest remaining time first scheduling. Once you have implemented the scheduler, connect a UART
terminal to your MCU and see the resulting order of the tasks.

Write the resulting pattern of the tasks in the space given below. Just write the task numbers to show
the order in which they are scheduled.

Table 2: Scheduler Output

No. 1 2 3 4 5 6 7
Task #
No. 8 9 10 11 12 13 14
Task #

Notice that if your scheduler is not working properly, at least one of the task would miss its deadline
and a message will be printed on UART followed by suspension of the program.

It would be easier for you to program/verify your scheduler’s behavior by plotting the intended behavior
on a paper first. For this purpose, you may use the space provided below.

Time (ms)

task0()

500 1000 1500 2000

task1()

0 2500 3000 3500

task2()
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2. [Pass/Fail points]: In this task, you need to implement Non-blocking SPI. Write a simple program
to test SPI in loopback mode. In particular:

• Configure SPI in Master mode with SPI interrupt enabled.

• Configure Timer1, with compare match interrupt enabled, in CTC mode to overflow after every
100ms.

• In Timer1 ISR, initiate an ADC conversion to read a potentiometers voltage (only upper 8 bits)
every 100ms.

• In ADC ISR, once the conversion is complete, initiate a SPI transmission to transmit the byte
containing voltage reading over SPI.

• Loopback the transmitted byte by connecting MOSI and MISO pins together.

• Once SPI interrupt triggers, print on LCD the byte value received over SPI.

Implement this system by filling in the gaps in the code layout given below.
Notice that busy waiting on SPIF flag after initiating a SPI transmission is not allowed.

The following code snippet provides the necessary layout and definitions.

#define F_CPU 16000000UL

#include <avr/io.h>

#include <avr/pgmspace.h>

#include <inttypes.h>

#include <avr/interrupt.h>

#include <stdio.h>

#include <string.h>

#include "lcd_lib.h"

// SPI related definitions

#define DDR_SPI DDRB

#define SPI_SS 2

#define SPI_MOSI 3

#define SPI_MISO 4

#define SPI_SCK 5

// Variables

volatile unsigned int Ain;

volatile uint8_t data_byte;

// LCD Strings

char lcd_buffer[17]; // LCD display buffer

const uint8_t LCD_Master[] PROGMEM = "Master: ";

//-----------------------------------------------------------------------

// All initializations
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void initialize_all(void)

{

/* Configure LCD, Timer1, ADC and SPI */

}

//-----------------------------------------------------------------------

// Timer 1 Compare Match A ISR (TCNT1 = OCR1A)

ISR (TIMER1_COMPA_vect)

{

/* Write your code here */

}

//-----------------------------------------------------------------------

// ADC ISR

ISR(ADC_vect)

{

/* Write your code here */

}

//-----------------------------------------------------------------------

// SPI ISR

ISR(SPI_STC_vect)

{

/* Write your code here */

}

//-----------------------------------------------------------------------

/* Main Function */

int main(void)

{

initialize_all(); // Initialize everything

sei(); // Enable Global Interrupts

while(1); // Nothing to do.

}

//-----------------------------------------------------------------------
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End of LAB5
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