9/26/2017

ECE3411 —Fall 2017

Lecture 3a.

Debugging Techniques

Marten van Dijk
Department of Electrical & Computer Engineering
University of Connecticut
Email: marten.van_dijk@uconn.edu

Copied from Debugging.pdf, ECE3411 — Fall 2015,
by Marten van Dijk and Syed Kamran Haider

UCONN

Debugging Techniques

= Debugging in Atmel Studio
= Simulator mode

= On-chip debugging using debugWire interface for Xplained Mini kits
® Debugging using Assert library

= Debugging using Hardware Peripherals
- LEDs, LCD

= Observing output signals using Oscilloscope

9/26/2017

Debugging in Atmel Studio (Simulator Mode)

® Create a new Atmel Studio project

= Select “Simulator” from the Tool Selection tab

Build
N/A N/A
Build Events
Toolchail
a0 Selected debugger/programmer
Device
Toal

Advanced
Programming settings

Erase entire chip ¥

Preserve EEPROM

Select Stimuli File for Simulator

Stimuli File

Activate stimuli when in breakmode from menu Debug->Execute Stimulifile, then continue execution

Starting a Debugging Session

= Build the project. (Hit F7)
® From Debug tab, select “Start Debugging and Break”

* The debugger pauses at the start of main.

B Test - AtmelStudio
File Edit View VAssistX ASF Project Build Debug | Tools

Windows T 1= |
Ml Start Debugging and Break Alt+F5 b
f =
d Cirl+Shift+F5 —
] Ctrl+Alt+F5 —
4 F5

#include <avr/io.h>

volatile int counter;
volatile int flag;

=int main(void)

{
// Initialize
counter = @;
flag = 9;
while(1)
{
// increment counter
counter++;
if (counter == 100)
{
/] toggle flag
flag ~= 1;
// reset counter
counter = @;
}
¥
}

9/26/2017

Various Windows in Debugging Session

Tt Detugaing) - Aneisiusio
Fie Edt View Vnssis

Teste

ASF prject Bild Do Tooks Vindow el
[P-90-cddsaala-o -&-G[@L)0u
fOC@mRRo LS fnbalsi b saEaa

> manunier [i courer== 100

BEEC PR

EIES

#include <avrio.h>

in counter;
int flog;

Zint main(uoid)
[

while(t)
€

counter
if (counter - 100)

1/ toggle flag
Flag *- 13|

counter - 03

Watch Window shows

1/ incrament caunter

11 reset counter

Jeco] name
2 pogemcamer o
Sack oier
regiser
VRegsir
ZRegite
soustegie ODODDNAE
e Counter
Fregueney e
sopvaen 275
& Regiiors
R0 o0
o o0
w2 o0
o o
Ao o0
s o0
w06 o0
w7 o0
o o

= Al 3 S

EEIEES -2
- Name

@ B D COWERTER
ANALOG COMPARATOR.

e

1/O view Window shows
peripheral register

values

o

wa
= Becws.

variable values

Processor’s view
Window shows

processor status

Is]
000
00000000

000D00D!

Adding a Breakpoint in Debugging Session

= Select any instruction in the code

= Right Click and insert a Breakpoint as follows

o

Goto Implementation
Refactor (VA)
Surround With (VA)
Insert Snippet...
Surround With...
Breakpoint

Add Watch
QuickWatch...

Pin To Source

Show Next Statement

Alt+G

Ciri+K, Cirl+X
Ctrl+K, Cirl+S

Shift+F9

Alt+Num *

|

Add Databreakpoint

0 Insert Breakpoint

Insert Tracepoint

Ctri+Shift+R

Continue to the next Breakpoint

= After inserting a breakpoint, click Continue (F5)

® The program will stop at Breakpoint as shown in the right window.

Elint main{void)

{

flag = @;
while{1)
{

{

// Initialize
+ | counter = @;

// increment counter

[*] counter++;

if (counter == 100@)

// toggle flag
flag = 1;

Elint main(void)
{
// Initialize
counter = @;

flag = @;
while(1)
1.

// increment counter

2 counter++;

if (counter == 100)
{
[/ toggle flag
flag 2= 1;

Observing Register/Variable Values at a Breakpoint

= Select particular peripheral and then the register to observe the value. (shown on left)

* Type variable names from your code in Watch Window to monitor their values. (shown on

right)

* Notice that | have ran through the loop once = counter = 1

= (= Fitter -2
Name Value

= @ EEPKOM
@ LJ EXTERNAL INTERRUPT
9 PORTB
40 PORTC
1 PORTD
= Bsp
& @ TIMER_COUNTER 0
@ TIMER_COUNTER 2
= @w
* B USARTO
B WATCHDOG

Name Address Value Bits
= OTRT 0x36 5 o e0e
* MOGTCCR 0x43 0 (=] a]
® QTIMSK1 Ox6F 2 Q- - 0m0
2 @TcRIA 80 35 00O@O as
#@T1crRB 081 25 00~ @B008
® @TCRIC 0682 0 oo
@TCNTI 0x84 19 ©cooocooo cooscoss
@ICR1 0x86 0 ©000co0o 000cooon

(QJOCR1A 0x88 249 ====---- -
@OCRIB 0x8A 0 cooocooo ooocoooo

Watch 1
i Name
@ counter
¥ flag

BS Autos B Locals

£3] Watch 1

| Value
E
|0

[Type
| int{data]@0x0102
int{datal@0x0100

B Watch 2

9/26/2017

9/26/2017

Other Commands in Debugging Session

. . . # Test (Debugging) - AtmelStudio
Inside ‘Debug’ tab, you'll see various useful debugging commands. e e view s ase piiee suia] vevia | 70
H Windows. »
|

= ‘Stop Debugging’ exists the debugging session. I

Ctrl+Shift+F5

= ‘Continue’ run the code until the next breakpoint.

P Continue F5
= ‘Restart’ restarts the debugging session and runs the code. < beaesinuifie
%2 Set Stimulifile
& Restart

= ‘Step Into’ steps through the code line by line.

QuickWatch. Shift+F9

. . 0 . Step Into 2]
= ‘Step Over’ jumps over a function and stops after executing it. — =
Step Out Shift+F11
= ‘Step Out’ returns from the current function and stops. ¢ = . S
Percepio Trace »
= ‘Run to cursor’ runs down to where the cursor is.
New Breakpoint »
‘ 3y . . ,9 Delete All Breakpoints Ctrl+Shift+F9
= ‘Reset’ command resets the current debugging session. O Disble Al reakpoins
impot DetaTin
Options and Settings

Debugging in Atmel Studio (debugWire Mode)

= On-chip debugging for Xplained Mini kits using debugWire interface is also quite similar to the
simulator mode.
= Simulator mode simulates the code as if it is running on the actual microcontroller
= debugWire allows you to actually run the code on the microcontroller while you debug it step by step.

= Connect the Xplained Mini board with your computer

® Go to the Tool tab and select mEDBG with debugWire interface.

Test.c Test* X

Build
N/A N/A
Build Events

RIS Selected debugger/programmer

Device
MEDBG « ATML2323030D58976279 v) Interface:(| debugWIRE
Tool
Advanced
Programming settings

Erase only program area ¥
[] Preserve EEPROM
Debug settings

V] Keep timers running in stop mode
[¥] Cache all flash memary except

Starting a Debugging Session (debugWire Mode)

= Build the project (hit F7) and from Debug tab, select “Start Debugging and Break”

" Most likely you'll see an error message asking you to enable DWEN fuse (as shown below).
* DWEN fuse (debugWire Enable fuse) enables the debugWire interface on your microcontroller.
= Click ‘Yes’ on the error message window and enable DWEN fuse.

= The debugger will pause at the start of main, just like simulator mode.

* Now you may use similar debugging techniques as done in Simulator mode
= Use breakpoints to stop at a particular instruction.
* Use Watch windows to observe/set program variables.
* Use I/O view to observe/set the peripheral registers.

Launch Failed X

~] Failed to launch debug session with debugWIRE. This could be caused by reset line
circuitry or disabled debugWIRE interface. Make sure that the reset line is free before
continuing. Do you want to use SPI to enable the DWEN fuse?

Exiting a Debugging Session (debugWire Mode)

Test (Debugging) - AtmelStudio
File Edit View VAssistX ASF Project Build | Debug | Tor

= |t is really important to exit the debugWire debugging session in a
proper way!

Windows

= To exit the debugging session, click on “Disable debugWire and Close”.
= This will first disable the DWEN fuse in the microcontroller.

—

@ Stop Debugging

art Without Debu

Disable debugWIRE and Close
* Then it will close the debugging session. b Continue

= |f DWEN fuse is not disabled, you'll not be able to program the

& Restart |
microcontroller in ISP mode (which we want to use most frequently). Break Al

& QuickWatch. Shift+F9

SE Stepinto it

[Z stepover F10 |

%= Step Out Shift+F11

*Z Run To Cursor Ctd+F10

T Reset Shift+F5
Percepio Trace y
Toggle Breakpoint)
New Breakpoint »

Import DataTips ..

Options and Settings..

9/26/2017

Debugging using Assert library

= http:/ /people.ece.cornell.edu/land /courses/eced47 60 /Debugging /index.htm has
many great suggestions

= One can use the assert library (http://en.wikipedia.org/wiki/Assert.h) to test
assertions in code

= Example:

//set up the debugging utility ASSERT
#define __ASSERT_USE_STDERR
#include <assert.h>

//test assertion - will print message if argument is NOT true;
assert(time<10);

Debugging using Hardware Peripherals

= Debugging can also be performed by hardware peripherals.

= By setting GPIO pins, for example, one can test the frequency of ISRs or certain program conditions
(i.e. PORTD | = 0x01; when something happens) and measure results with an oscilloscope.

= Once the LCD lab has been done, one can also display variables and conditions on
the screen as code is executed, if there are problems.

9/26/2017

ECE3411 —Fall 2017
Lab3a.

Debugging using Atmel Studio,
Measuring Human Reaction Time,
Timer 1 Capture Interrupt

Marten van Dijk
Department of Electrical & Computer Engineering
University of Connecticut
Email: marten.van_dijk@uconn.edu

Copied from Lab 5¢ and Lab 4a, ECE3411 — Fall
2015, by Marten van Dijk and Syed Kamran Haider

UCONN

Task 1: Debugging

1. Download the buggy code (Lab3aBuggy.c) from Piazza under resources.

Correct the syntax errors in it.

2. Read the slide deck about debugging techniques.

* The spec of the buggy code is that we want to use eight LEDs to show the number of button presses,

but if you program your board with this buggy code, you will find that the count keeps incrementing.

= Use simulator or DebugWire to help you fix this code.

10/9/2017

10/9/2017

Starting a Debugging Session

® Create a new Atmel Studio project

= Select “Simulator” from the Tool Selection tab

W11_Lab1* > RUGENETIRS

Build

N/A N/A
Build Events
Toolchai
il Selected debugger/programmer
Device
Tool
Advanced

Programming settings

Erase entire chip ¥

Preserve EEPROM

Select Stimuli File for Simulator

Stimuli File

Activate stimuli when in breakmode from menu Debug->Execute Stimulifile, then continue execution

3
= Build the project. (Hit F7)
® From Debug tab, select “Start Debugging and Break”
* The debugger pauses at the start of main.
M W11_Lab1 - AtmelStudio
File Edit View VAssistX ASF Project Build | Debug | Too
Windows v PSS
i| Pl Start Debugging and Break Alt+F5 4
\ Attach to Target
d Stop Debugging Ctrl +Shift+F5 -!
o VAL
P Start Without Debugging Ctrl+Alt+F5 —
14 F5
QuickWatch.. Shift+F9
4

Start of Debugging Session

® The debugger pauses at the start of main.

" ‘W11_Lab1 (Debugging) - AtmelStudio
File Edit View VAssistX ASF Project Builld Debug Tools Window Help
B S a6 a9 - S5 | P # Debug

':EE%E"E“}‘:'—\;:_:

MiR @D 0 b |6 SELE %2 T Hex

Wi11_Lablc x
main -|:I # int main{void)
=int main(void)
{
=1 I initialize_all();
sei(); // Enable global interrupts
while (1)
// Nothing to do.
H
[}

Peripheral Registers in Debugging Session

= Click on I/O view button to see all peripheral registers in an /O Window

File Edit View VAssistX ASF Project Build Debugy Tools Window Help
:ijfujJ-ﬁ@]mg‘7_4‘3%&«-“;1-:;\.._'-.11\7”‘ Debug |
I PERRD D O S @@ U b |e52E% = T He |

R

{ o ATmega328 § Simulator 5

09I BR]

A

Disassembly Wil lablc x

10 View

= = Fiter: | -l

» main -IZ] 7 intmaintvoia)

Name Value
Eint main(void) 1+ [EEPROM
] EXTERNAL_INTERRUPT
P initialize_all(); i PORTE
| sei(); // Enable global interrupts 48 PORTC
1/O View Button g
while (1) = Bspl
{

// Nothing to do.

TIMER_COUNTER 1

TIMER_COUNTER 2
} = BTw
USARTO

3 BLWAICHDOG 1/O Registers
Name Address Value .
Window

100% ~

SSITeREM @, ASF Explorer M Processor @ Solutil

10/9/2017

Adding a Breakpoint in Debugging Session

= Select any instruction in the code

= Right Click and insert a Breakpoint as follows

// Timer 1 Compare Match A ISR (TCNT1 = OCR1A)
EIISR (TIMERL COMPA vect)
{
// Load new Time peried
OCR1A = time_period;
Goto Implementation Alt+G
// Load new duty cyc Refactor (VA) »
OCR1B = duty_cycle; i
} Surround With (VA) (3
L, Insert Snippet.. Cirl+K, Ctrl+X
5 ?R(TIMER@—COIV‘PA—"“J‘) 2, Surround With.. Cirl+K, Ctrl+S
time++; Breakpoint 15 Add Databreakpoint
a = time*@.001; //co P
Add Watch i
duty_cycle = sin(2*M W Insert Breakpoint
} &4 QuickWatch.., Shift+F9 Insert Tracepoint
Pin To Source
Fint main(void) ., .
¢ % Show Next Statement Alt+Num *
'

10/9/2017

Continue to the next Breakpoint

= After inserting a breakpoint, click Continue (F5)

* The program will stop at Breakpoint as shown in the right window.

File Edit View VAssistX ASF Project Build Debug Tools Window Help
- - dd a9 - -S-0FEal rmb s
ol T B e T T P e | Hex | i@ s e i B [
» Wii_lablc ~| :l » CA\Users\e\Google Drive\Microcontrollers Course\ECE3411_Fall15\ Labs\Solutions\W11_Lab1\W11_

TCCROA [= (1<<WGMe1); 77 turn on clear-on-match, CTC mode : ' =
TCCROB = (1<<CS@8) | (1<<CS@1); // Set pre-scalar to divide by 64 // Timer 1 Compare Match A ISR (TCNT1 = OCR1A)
=TSR (TIMER1_COMPA vect)

{

¥

// Timer 1 Compare Match A ISR (TCNT1 = OCR1A) . R
SIISR (TIMERL_COMPA vect) // Load new Time period

t < |[_OCRIA = time period;|

// Load new Time period

@
// Load new duty cycle

// Load new duty cycle 5 A
OCRIB = duty_cycle; OCR1B = duty cycle;

} |}

S ISR(TIMER®_COMPA_vect)

timess;
a = time*0.@@1; //convert to actual time in ms
duty_cycle = sin(2*1_PI*62.5%(a));

}

Observing Register/Variable Values at a Breakpoint

= Select particular peripheral and then the register to observe the value. (shown on left)

= Type variable names from your code in Watch Window to monitor their values. (shown on right)

ovew
== ‘ Filter: -| ‘ Z

Name Value
= B EEPRUM

4 EXTERNAL_INTERRUPT

W poRTE Watch 1 v 1 x
1 PORTC | Name o | Value Type

I time_period 249 |uint16_t{data}@0x0103

) TIMER_COUNTER 0 7 duty_cycle | uint1 6_t{data}@0x010d

@ (@) TIMER COUNTER_1 | |

€ TIMER_COUNTER 2

= Bw
& B usaRTO
B WATCHDOG
Name Address Value Bits
= @OTIFRT X365 (L] a0
HWGTCCR o4z 0 O a B Autos B Locals [PEARCHERE A Watch 2
B @TIMSKT Ox6F 2 =) (@] [@]

= @TCRIA x80 35 O0O@0 (1]
E@TccrRB o1 25 00 @@008
® @TCCRIC k82 0O 0o

@TCNT1 0x84 19 ©OOOCOOO OooSCOEE

@Icr1 86 0 £O00C000 CDOCODOO
[QIOCRIA 0x88 249 s==e=seee o
@OCRIB 0x8A 0 £O00C000 OOOCODOO

Files for today’s Lab Tasks

* Download the zipped file Lab3a.zip from piazza under resources section.

= This file contains three C code files.

= Fix_it.c

10/9/2017

Task2: Measuring the Human Reaction Time

Implement a system to measure the Human Reaction Time down to a resolution of Tms.

In particular:

1.

2
3
4.
5

Print a message on UART for the user to get ready
Woait for some random amount of time, e.g. between 2 to 5 seconds
Turn on a LED & start Timer1

The user is supposed to push a button as soon as the LED turns on

Read Timer1 to measure the time between the two events, i.e. tuning on the LED and

detecting a button push

Print the reaction time in milliseconds on UART

Task3: Experimenting with Capture Interrupt

Run the sample code demonstrating “Timer1 Capture Interrupt” provided in Lec2c.

Connect PB3 (OC2A) to PD7 (AIN1)

This program uses Timer1 Capture Interrupt to accurately measure Polling time for
Task1().

It then prints the actual time (200 cycles) measured by Timer1 and the time observed
by polling mechanism.

Your task is to vary the time “t1” that controls the printing rate.

Why does the observed polling time vary with “t1"2

10/9/2017

9/26/2017

ECE3411 —Fall 2017
Lecture 3b.

External Interrupts
Pin Change Interrupts
Task Based Programming

Marten van Dijk
Department of Electrical & Computer Engineering
University of Connecticut
Email: marten.van_dijk@uconn.edu

Copied from Lecture 3c and Lecture 4a, ECE3411 — Fall 2015, 6
by Marten van Dijk and Syed Kamran Haider

UEUNN Based on the Atmega328P datasheet

External Interrupts

= Chapter 12 datasheet
= INTO & INT1

Can be triggered by a falling or rising edge or a low level = EICRA (External Interrupt Control
Register A)

* Low level interrupt is detected asynchronously = can be used to wake from idle mode as well as
sleep modes (will see one such example in a forthcoming lecture)

= If used for wake-up from power-down, the required level must be held long enough for the MCU to complete the wake-up to
trigger the level interrupt. (Start-up time defined by SUT and CKSEL fuses, chapter 8)

= PCINT23..0
* The pin change interrupt PCIO will trigger if any enabled PCINT7..0 pin toggles
* The pin change interrupt PCI1 will trigger if any enabled PCINT14..8 pin toggles
* The pin change interrupt PCI2 will trigger if any enabled PCINT23..16 pin toggles

Interrupt Vectors

INTO_vect

INT2_vect

PCINTO_vect

PCINT1_vect

PCINTZ_vect

hitp:

www.atmel.com/webdoc/AVRLibcReferenceManual /group

avr__interrupts.

html

SIG_INTERRUPTO

SIG_INTERRUPT1

SIG_PIN_CHANGED

S1G_PIN_CHANGE1L

SIG_PIN_CHANGEZ

External
Interrupt 0

External
Interrupt
Request 1

Pin Change
Interrupt
Request 0

Pin Change
Interrupt
Reguest 1

Pin Change
Interrupt
Request 2

AT90S1200, AT90S2313, ATI0S2323, ATO0S2333, ATIDS2343, ATI0S4414, ATIDS4433, ATO0S4434, ATGOSES1S, ATIOSESIS, ATOUPWM216, ATOOPWM2B, ATIOPWM316, ATOOPWM3E,
ATSOPWMS3, ATSOPWM2, ATSOPWIL, ATSOCAN1ZS, ATIOCANSZ, ATIOCANSE, ATmegall3, ATmegal2s, ATmegal284P, ATmegals, ATmegalsl, ATmegals2, ATmegals3, ATmegalss,
ATmegal65P, ATmega168P, ATmegal69, ATmegal69P, ATmega32, ATmega323, ATmega325, ATmega3250, ATmega3250P, ATmega328P, ATmega329, ATmega3290, ATmega3230P,
ATmega32HVB, ATme=ga406, ATmega48P, ATmegab4, ATmegat45, ATmega6450, ATmegat49, ATmegas490, ATmegal, ATmega8515, ATmeg28535, ATmega88P, ATmegal68,
ATmegad8, ATmega88, ATmega640, ATmegal280, ATmegal281, ATmega2560, ATmega2561, ATmega324p, ATmegalsdp, ATmega6a4p, ATmegasad, ATmegal6HVA, ATtiny11,
ATtiny12, ATtiny13, ATtiny15, ATtiny22, ATtiny2313, ATtiny26, ATtiny28, ATtiny43U, ATtinyds, ATtiny4S, ATtiny25, ATtny8S, ATtiny261, ATtinyd61, ATtinyS61, ATIOUSB162,
AT90USBS2, ATS0USB1287, ATI0USB1266, ATS0USBE47, ATIOUSBELE

AT90S2313, AT90S2333, ATI054414, ATI0S4433, ATI0S4434, ATI0SE515, ATO0SES3S, ATIOPWM216, ATSOPWM2E, ATSOPWHM316, ATIOPWMIB, ATIOPWMS, ATIOPWM2, ATIOPWMI,
ATGOCANL28, ATSOCAN32, ATOOCANG4, ATmegal03, ATmegal2s, ATmegal284p, ATmegals, ATmegal6l, ATmegal62, ATmegals3, ATmegal6sP, ATmega32, ATmega323,
ATmega328P, ATmega32HVB, ATmegad0s, ATmegadsP, ATmegats, ATmegas, ATmegas515, ATmegas53s, ATmegaGer, ATmegal68, ATmegads, ATmegass, ATmegasao,
ATmega1280, ATmega1281, ATmega2560, ATmega2561, ATmega324P, ATmegal64P, ATmega6ddP, ATmegabdd, ATmegaibHVA, ATtiny2313, ATtiny28, ATtiny48, ATtiny261,
ATtiny461, ATtiny 861, AT90USB162, ATEDUSBE2, ATE0USB1287, ATI0USB1286, ATO0USBE47, ATOOUSBE4E

ATmegal62, ATmegalss, ATmegalssP, ATmegal68P, ATmegalss, ATmegalsgP, ATmega32s, ATmega32sy, ATmega3250p, ATmega32sP, ATmega3ag, ATmega3290, ATmega3290p,
ATmega32HVE, ATmegad06, ATmegadaP, ATmega64s, ATmega64S0, ATmega64g, ATmega5450, ATmega88P, ATmegal6s, ATmegads, ATmegas, ATmega40, ATmegal1280,
ATmega1281, ATmega2560, ATmega2561, ATme0a324P, ATmegal64p, ATmega644P, ATmegas44, ATHNY13, ATtiny43U, ATtiny48, ATtiny24, ATtiny44, ATtinyS4, ATtiny4s, ATtiny 25,
ATHiny8S, ATIOUSB162, ATSOUSEE2, ATS0USB1287, ATS0USB1266, ATI0USBEAT, ATIOUSBE4E

ATmeqa162, ATmegal65, ATmegal6SP, ATmega168F, ATmegal6s, ATmegal68P, ATmega32s, ATmega3250, ATmega3250P, ATmega328P, ATmega328, ATmega3280, ATmega3250P,
ATmega32HVB, ATmega406, ATmega48P, ATmega645, ATmega6450, ATmega649, ATmega6490, ATmegaB8P, ATmegal68, ATmegads, ATmega8, ATmega640, ATmega1280,
ATmegal281, ATmega2560, ATmega2561, ATmega324P, ATmegal64p, ATmega6a4F, ATmegasa4, ATtiny43U, ATtiny48, ATtiny24, ATtiny44, ATtiny84, ATIOUSB162, ATIOUSBEZ

ATmega3250, ATmegad2s0r, ATmega326p, ATmega3290, ATmega3290R, ATmenadsP, ATmega6450, ATmegas490, ATmegadsP, ATmegal6d, ATmegads, ATmegass, ATmegas4o,
ATmega1280, ATmega1261, ATmega2560, ATmega2561, ATmega324P, ATmegal64P, ATmega644P, ATmegabad, ATtiny48

3
Table 11-6. Reset and Interrupt Vectors in ATmega328P
Program

VectorNo. Address'? Source Interrupt Definition

1 o0x0000" RESET External Pin, Power-on Reset, Brown-out Reset and Watchdog System Reset

2 0x0002 INTO \ External Interrupt Request 0

3 0x0004 INT1 \ External Interrupt Request 1

4 0x0006 PCINTO] Pin Change Interrupt Request 0

5 0x0008 PCINT1 / Pin Change Interrupt Request 1

6 0x000A PCINT2/ Pin Change Interrupt Request 2

T 0x000C W Watchdog Time-out Interrupt
Notice that the external interrupts and pin interrupt are at the top of the table
They will be the first to be checked after an ISR finishes = They have priority
Usage: Program a SW interrupt for executing an atomic piece of code
= A pin is set as an output
* Main code toggles the pin
= This creates a PCINT HW event and sets a corresponding flag
* Interrupt unit will scan this flag first and prioritizes the corresponding PCINT ISR (i.e., if during toggling another ISR is called due to some other HW event, then once

this ISR is finished the PCINT ISR will be called next)
* The PCINT ISR will be fully executed without interruption = an atomic execution
4

9/26/2017

Example PCINT21 = PD5

DDRD | = (1<<DDD5); //PD5=PCINT21 is output

12.26 PCMSK2 - Pin Change Mask Register 2

[eons T vowe |
R W

sy [y e P [PR PCMSK2 = (1<<PCINT21); //toggling PD5 sets flag

Raas/Wrte I [AW RAW

inaial Vakoe o o)

1225 PCIFR - Pin Change Interrupt Flag Register

When PD5 toggles, flag PCIFR & (1<<PCIF2)

e oo [I l ‘ ,Ct,\‘ TR] -'-Ev] *ow changes from O (O as an integer represents 0x00)
et : p i p e L/ 7 % to (1<<PCIF2) (which, represented as an integer,
1224 PCICR - Pin Change Interrupt Control Register equals 4)
B 7 [5 s 3 /7\ ' 0
o, L = = - — [P PR PR) v PCICR | = (1<<PCIE2); //Enable interrupt for
e Valon 0 0 0 0 A7 o //PCIFR.PCIF2

Write
* ISR(PCINT2_vect){ Atomic code;}
* If the atomic code needs to be executed in the main program, just toggle PORTD A= (1 <<PORTDS5);

9/26/2017

Sequence of Events

In main program toggle PORTD A= (1<<PORTD5);

PCIFR.PCIF2 is set to 1

PCICR |= (1<<PCIE2); -> Interrupt unit checks PCIFR.PCIF2

If currently an ISR is executing, finish its execution and start the next instruction in the main program

As soon as the current instruction in the main program is finished, the interrupt unit checks for flags

with enabled interrupts

6. The interrupt unit does this in round robin fashion but starts at the top of the interrupt vector table
after an ISR is finished = prioritizes RESET over external interrupts over pin interrupts over the rest

7. Looks up address corresponding to ISR(PCINT2_vect), saves register state, puts PC on stack, etc.

Execute without any interruption ISR(PCINT2_vect){ Atomic code;}

9. During RETI state is restored, flag PCIFR.PCIF2 is cleared, and PC points to the next instruction in the

main program

Ohowbd=

®

NOTE: Instead of PORTD "= (1<<PORTDS5); the main code can also directly set PCIFR | = (1<<PCIF2);

6

INTI

* Programming external interrupt INT1 = PD3 on falling edge
* Switch connected to PD3 (set to PD3 to input): DDRD &= ~(1<<DDD3);

* #tdefine SW_PRESSED I(PIND & (1<<PIND3))
* If SW_PRESSED {...} checks whether PIND & (1<<PIND3) ==

= PD3 low means pressed and PD3 high means not pressed: Want to detect falling edge

12.24 EICRA - External Interrupt Control Register A

= EICRA |= (1<<ISC11);

= EIMSK | = (1<<INT1);
Need to write ISR and

The External Interrupt Control Register A contains control bits for interrupt sense control.

Ba 7 & 5 4 3 2 1 0
(0xE9) l -] - [- AE' 1" SC10 | IsCo | 1SCO0 I EICRA
ReadWmte R] 3 R W T W oW
Initial Vakue 0 0 0 [} 0 0 0 0
Table 12-1. Interrupt 1 Sense Control
Isc11 1sC10 Description

The low level of INT1 generates an interrupt request

Any logical change on INT1 generales an intemupt request

The falling edge of INT 1 generates an interTupt request

The nsing edge of INT1 generates an intermupt request

1222 EIMSK - External Interrupt Mask Register

implement a debounce state

machine ...

Ba

0x1D (0x3D)
ReadWrie
Intal Valie

7

[5 4 3 2 1 0

[T T W] WT0] Emsk
R] R R R R W W
o 0] 0 0] 0 0

INTI

#define SW_PRESSED I(PIND & (1<<PIND3))

void Initialize(void)

{
DDRD &= ~(1<<DDD3);
EICRA |= (1<<ISC11);
EIMSK | = (1<<INT1);
... Timer O
poll_time = POLLING_DELAY;
DebounceFlag = 0;

}
void ISR(TIMERO_COMPA _vect)

if ((poll_time>0) && (DebounceFlag==1)) --poll_time;
ISR(INTI_vect)

EIMSK &= ~(1<<INT1); // Disable interrupt

.. record this event ...
DebounceFlag = 1;

}

void PollB;

if SW_PRESSED { ... latest recorded event is for a button push ...

utton(void)

DebounceFlag = 0;
poll_time = POLLING_DELAY;

EIMSK |

}

= (1<<INT1);

int main(void)

{

Initialize();

sei();

while(1

)

if (poll_time == 0) {PollButton();}

9/26/2017

9/26/2017

Debouncing with a Pin Interrupt

* Instead of using INTT we can use a pin interrupt

® The pin toggles:
* Wrap all ISR code in an extra if statement
* If SW_PRESSED { .. Code .. }

= Now we will only execute Code if the button transitions from not-pressed to pressed.

Stop Watch

® The ISR records the moment of the falling edge
= Represented by a SW counter maintained in ISR(TIMERO_COMPA _vect)

= Only if the button is really pressed, PollButton() will set a flag telling the main
program that the recorded event is valid.

® The main while loop polls the flag and as soon as it is set it e.g. prints the recorded
time after which the flag is set back to invalid.

= All kinds of variations possible

Example Problem 1

Consider the following code:

ISR(TIMERO_COMPA _vect)

¢ if (flag_timer > 0) {flag_timer--;}
if (flag_timer == 0) {flag = ??; }
}
ISR(INT1_vect)
{
flag = ?2;

flag_timer = ?2;

}

Assume ISR(TIMERO_COMPA _vect) is triggered every 1ms. How should the question marks be filled in such that
* as soon as ISR(INT1_vect) is triggered, then flag is set to 1, and

* assoon as 1 second (with approx 1ms precision) has passed since the last time ISR(INT1_vect) was triggered, flag is set to 0.

9/26/2017

Example Problem 1

Solution:

ISR(TIMERO_COMPA _vect)

{
if (flag_timer > 0) {flag_timer--;}
if (flag_timer == 0) {flag = 0; }

}

ISR(INT1_vect)

{
flag = 1;
flag_timer = B

}

Assume ISR(TIMERO_COMPA _vect) is triggered every 1ms. How should the question marks be filled in such that
* as soon as ISR(INT1_vect) is triggered, then flag is set to 1, and

* assoon as 1 second (with approx 1ms precision) has passed since the last time ISR(INT1_vect) was triggered, flag is set to O.

Example Problem 2

One of your colleagues has already written the code for a task() (which takes about 100 micro
seconds) and asks you to write:

The main code int main(void), which
* starts by setting registers, enabling interrupts, and executing task() for a first time, and

= concludes with a while loop which starts execuﬁn? task() as soon as within a 1 second (with approx 1ms precision) time
frame each of the two pins 1 and 32 have signaled a falling edge after the last time task() finished executing

Example: Consider the moment when task() finished executing at for example t=10.0001
seconds.

Suppose that pin 1 signals falling edges at times t1=13, t11=13.7, and 11=14.3 seconds, pin 32
si?nols falling edges at times 10 = 12, t0= 13.5, and t_0=14.2 seconds. Assume for the purpose
of this example that no other falling edges happen.

After time t=10.0001 when task() finished executing, the first moment each of the two pins signal
a falling ed:ge within a 1 second time frame happens at t=13.5. So, task() should start executing
at time t=13.5.

Suppose it finishes at t=13.5001. After time t=13.5001, the first moment each of the two pins all
signal a falling edge within a 1 second time frame happens at t=14.2. So, task() should again
start executing at time t=14.2.

Example Problem 2

Besides the main code you are also required to write the appropriate ISRs and
declare variables. Assume the MCU runs at 20MHz. You can use the next two pages
fo write your code.

Hint: As in problem 1, program a flag0 and a flag1 for each of the two pins: As
soon as they sum up to 2, each pin triggered an ISR within the last 1 second
timeframe.

30 PDO (RXD/PCINT 18}

Y
(PCINT1OCIBANTY) PD3 O 1 /)

(PCINT20XCRITOT PBS T2

9/26/2017

Example Problem 2

// Put the declaration of your global variables here:
#define t_flag 1000 // 1000ms = 1 second

volatile int flag0, flag1;
volatile int flagO_timer, flag1_timer;

}
ISR(TIMERO_COMPA _vect)

// Put your code here: {
if (flagO_timer > 0) {flagO_timer--;}
if (flagO_timer == 0) {flag0 = 0; }

if (flag1_timer > 0) {flag1_timer--;} }
if (flag1_timer == 0) {flag1 = 0; }

ISR(INTO_vect)

{ ISR(INT1 _vect)

// Put the code of your second ISR here:
flag0 = 1;
flagO_timer = t_flag;

// Put the code of your third ISR here:
flagl = 1;
flag1_timer = t_flag;

9/26/2017

15
int main(void)
// Put your code of the main body (including initializations) here:
// An accurate 1ms timer (as explained in class):
TIMSKO = 2; // enable interrupt
TCCROA = 0x02; // return on clear-on-match
TCCROB = 0x02; // prescalar @ 8 oe I 5 5 4 3 2 1 o)
OCROA = 249; // each time tick is 8(OCROA+1)/20MHz = 1ms exactly oo JOR S S R S s
// An accurate enough timer is needed otherwise the flag_timers drift with respect
// to real time and we may not meet the specification of ~1ms precision. Table 12-1. _Interrupt 1 Sense Control
ISC11 I1sc10 Description

// Initialize external interrupts INTO (= pin 32) and INT1 (= pin 1) on falling edges o 0 The low level of INT 1 generates an interrupt request
DDRD = 0x00; // D.2 = pin 32 and D.3 = pin 1 are inputs 0 1 Any logical change on INT1 generates an interupt request
EICRA = (1<<ISCO1) | (1<<ISC11); 1 0 The falling edge of INT1 generates an interTupt request
EIMSK = (] <<|NTO) I (] <<|INT1); 1 1 The nsing edge of INT1 generates an interrupt request

Be 7 6 5 4 3 2 1 a
task_timer = t_task; oo@an) [= | T EIMSK
flago = O; Read/Write R R R R R R W RW
flagl = 0;

// Globally enable interrupts
sei();

Example Problem 2

// Execute task() before entering the while loop
// This allows us to formally meet the specifications of the program
task();

while (1)

if (flagO + flagl == 2) // See hint

{
task();
// All flags should be reset, since we just finished executing task()
flag0 = 0;
flagl = 0;

}

}

return O;

}

9/26/2017

Example Problem 3

® One of your colleagues has already written the code for two tasks task1() and
task2() (each taking only about 100 micro seconds) and asks you to write:

The main code int main(void), which
= starts by setting registers and enabling interrupts, and
= concludes with a while loop which
= starts executing task1() every 1 millisecond (as accurate as possible), and
= starts executing task2() as soon as
1. arising edge is received over pin 1 since the last time task2() finished executing and

2. atleast 1 second has passed since the last time task2() finished executing.

Example: task2() finished executing at time t=0.

(a) If the next rising edge after =0 is detected at e.g. time t=300 milliseconds, then the while loop waits another 700

milliseconds (such that 1 full second has passed) before it starts executing task2().

(b) If the next rising edge after t=0 is detected at e.g. time t=1100 milliseconds, then the while loop immediately starts

executing task2() (since 1 full second has already passed).

= Besides the main code you are also required to write the appropriate ISRs.

Assume the MCU runs at 20MHz.

Example Problem 3

// Put the declaration of your global variables here:
// define t1 as 1ms and t2 as 1000ms = 1 second
#define t1 1

#define t2 1000

volatile int task1_timer;
volatile int task2_timer;
volatile int flag;

ISR(TIMERO_COMPA _vect)
// Put the code of your first ISR here:
// Set up virtual timers
if (task1_timer > 0) {task1_timer--;}

if (task2_timer > 0) {task2_timer--;}

}
ISR(INT1_vect)

// Put the code of your second ISR here:

9/26/2017

// Set flag
flag = 1;
}
19
int main(void)
{
// Put the code the main body here:
// An accurate 1ms timer (as explained in class):
TIMSKO = 2; // enable interrupt
TCCROA = 0x02; // return on clear-on-match N ., 7 . s : ,
it L] 4 2
TCCROB = 0x02; // prescalar @ 8 (0e59) — 1 EICRA
OCROA = 249; // each time tick is 8(OCROA+1)/20MHz = Tms exactly ReadWete R K R AW RW W RW
Table 12-1. Interrupt 1 Sense Control
// Initialize external interrupt INT1 (= pin 1) on rising edge
ISC11 I1sc10 Description

DDRD = 0x00; // D.3 = pin 1 is an input o - il BT " ——

o low level o QONErates an INBTUPL reques
EICRA = (1<<ISC11) | (1<<ISC10); ® low lovel of INT geriarales sn iberrupt receiss

_ (1] 1 Any logical change on INT 1 generates an interrupl request
EIMSK = (1<<INT1); 1 0 The falling edge of INT1 generates an interrupt request
i 1 1 1 The nsing edge of INT1 generates an interrupt request
task1_timer = t1;
task2_timer = t2; B 7 [5 s 3 2 1 o
flag = O: oo @an) [-1 - 1 -1 -1 i W] ewsk
9 ! ReadWrie R R R R ® R "W EL

// Globally enable interrupts
sei();

20

10

Example Problem 3

while (1)

if (task1_timer == 0)
{
task1_timer = t1; // Before calling task1(), otherwise task1() is called
// every 1.1 ms where the 100 micro second delay comes
// from the execution of task1()
task1();
}

if (task2_timer == 0) && (flag == 1)
{
task2();
flag = 0; // As soon as task2() is finished we want to be able
// to detect external interrupts

task2_timer == t2; // After calling task2() since we measure the time that
// passes since task2() has finished executing for the
// last time
}
}
return O;
}

Al

9/26/2017

11

ECE3411 —Fall 2017
Lab3b.

Implementing a Stopwatch

Marten van Dijk
Department of Electrical & Computer Engineering
University of Connecticut
Email: marten.van_dijk@uconn.edu

Copied from Lab 4b, ECE3411 — Fall 2015, by
Marten van Dijk and Syed Kamran Haider

UCONN

Task 1: Simple Stopwatch

Implement a Stopwatch using TimerO that measures the time down to 1ms resolution.

= Connect a switch to External Interrupt INT1 (PD3)
= Pushing the switch should start the Stopwatch.
® The same switch pushed once again should show the elapsed time on LCD.

= Another button push resets the Stopwatch and makes it ready for another
measurement.

® Make sure you debounce the button pushes.

10/9/2017

10/9/2017

Task 2: Improved Stopwatch

Implement a Stopwatch by reading TCNT1 of Timer1 to measure the time down to Tms
resolution. Use TimerO to introduce Polling Delay for Switch Debouncing.

= Connect a switch to External Interrupt INT1 (PD3)
= Pushing the switch should start the Stopwatch.
® The same switch pushed once again should show the elapsed time on LCD.

= Another button push resets the Stopwatch and makes it ready for another
measurement.

® Make sure you debounce the button pushes.

ECE3411 —Fall 2017

Lecture 3c.

Review Session

Marten van Dijk
Department of Electrical & Computer Engineering
University of Connecticut
Email: marten.van_dijk@uconn.edu

Copied from Lecture 4b, ECE3411 — Fall 2015, by
Marten van Dijk and Syed Kamran Haider

UCONN

Hardware Registers of a Port

Each Port on the Mega AVRs has three hardware registers associated to it:

= DDRx : Data-Direction Register for Port x
= Controls whether each pin is configured for input (0) or output (1).
= To enable a pin as output, a ‘1’ is written to that bit in DDRx.

= By default, all pins are initialized as inputs (DDRx = 0x00).

® PORTx : Port x Data Register
= Sets an output pin to logic HIGH (1) or LOW (0).
= E.g. writing a ‘1’ to a bit position in PORT register will produce logic HIGH at that pin & vice versa.

® PINXx : Port x Input Pins Address
= Used to read the logic values of each pin that’s configured as input.

= E.g. a value ‘O’ of a bit of PIN register indicates a low voltage at that pin & vice versa.

9/26/2017

Debouncing of Bouncing Signals

= A button push results in a bouncy transition
* Due to physical limitations of the contact surfaces

* Bouncing is often very fast > orders of few us to ms

vcc

Pull-up Resistor
10ka

Button
To AVR

o aﬂ_

= Debouncing in software ‘}1
* Key idea: Read > Wait > Verify
* Wait time needs to be carefully controlled

* E.g. wait time should be at least 300us for this example.

B W0 TG £ B Y

,+_4

<300us =>

Software Debouncing State Machine

NotPushed?

Pushed?

Maybe
Pushed
NotPushed?

NotPushed? Pushed?

Pushed?

Maybe
NotPushed

Pushed

NotPushed?

Pushed?

9/26/2017

LCD Data Write (4-bit Mode)

{

void LedDataWrite(uint8_t da)

// First send higher 4-bits

DATA_PORT = (DATA_PORT & 0xf0) | (da >> 4);
CTRL_PORT | = (1<<RS);

CTRL_PORT | = (1 <<ENABLE);

_delay_ms(1);

CTRL_PORT &= ~(1 <<ENABLE);

_delay_ms(1);

// Send lower 4-bits

DATA_PORT = (DATA_PORT & 0xf0) | (da & 0x0f);
CTRL_PORT | = (1<<RS);

CTRL_PORT | = (1 <<ENABLE);

_delay_ms(1);

CTRL_PORT &= ~(1 <<ENABLE);

_delay_ms(1);

//give the higher half of cm to DATA_PORT

//setting RS=1 to choose the data register

//setting ENABLE=1

// allow the LCD controller to successfully read command in
// Setting ENABLE=0

// allow long enough delay

//give the lower half of cm to DATA_PORT

//setting RS=1 to choose the data register

//setting ENABLE=1

// allow the LCD controller to successfully read command in

// Setting ENABLE=0

// allow long enough delay

Functions

Functions

Blocking vs. Non

Blocking LCD Write Timing

Blocking Writes:

_delay_ms
led_write

main

Wasted Cycles

Wasted Cycles

»

Non-Blocking Writes:

led_write |-----

Saved Cycles

Saved Cycles

main

»

Time (ms)

»

>

Time (ms)

9/26/2017

Interrupts & ISRs

A few questions:

® Who calls the ISR?

= Can you “pass” a variable to an ISR2
® What is the return value of an ISR?

* How does the AVR know where to find the code for the corresponding ISR?

Interrupts & ISRs

" Who calls the ISR?

= The hardware!

= Can you “pass” a variable to an ISR2
* Nol! The variable must be globally defined.

" What is the return value of an ISR2

* Nothing! However, it can store some value in a global variable.

* How does the AVR know where to find the code for the corresponding ISR?
* Through the Interrupt Vector Table.

9/26/2017

ATmega328P Interrupt Vector Table

Program
= The AVR knows what fype of VectorNo. Address” Source Interrupt Definition
. 1 0x0000'" RESET External Pin, Power-on Reset, Brown-out Reset and Walchdog System Reset
interrupt has occurred. 2 SR T T o o e e e e
2 0x0002 INTO Extemnal Interrupt Request 0
. 3 Ox0004 INT1 External Interrupt Request 1
* |t jumps to the program address : mo00s | POINTO Pin Chonge Iterrupt Request 0
Speciﬁed in |n'rerrUpT Vec'ror TG b |e. 5 %0008 PCINT1 Pin Change Interrupt Request 1
[Ox000A PCINT2 Pin Change Interrup! Request 2
* E.g. Address 0x0002 for INTO - woooc | wor [Wetchog Time-out tnerrupt
8 Ox000E TIMER2 COMPA Timer'Counter2 Compare Match A
= There it sees another Jump 9 0x0010 | TMER2 comPB TimerCounter2 Compare Match B
. . . . 10 00012 TIMER2 OVF Timer/Counter2 Overflow
instruction which takes it to the ISR e ! | mentountor? Sredioy
1" O0x0014 TIMER1 CAPT Timer/ Counter1 Capture Event
code. 12 0x0016 TIMER1 COMPA Timer/Counter1 Compare Match A
13 0x0018 TIMER1 COMPB Timer/Coutner! Compare Match B
14 Ox001A TIMER1 OVF Timer/'Counter1 Overflow
15 0x001C TIMERO COMPA Timer Counter0 Compare Match A
18 OxDO1E TIMERO COMPB Timer'Counter0 Compare Maich B
17 0x0020 TIMERO OVF Timer/Counter0 Overflow
18 0x0022 SP1, STC SPI Senal Transfer Complete
19 0x0024 USART, RX USART Rx Complete
20 0x0026 USART, UDRE USART, Data Register Empty
21 00028 USART, TX USART, Tx Compilete
22 | 0x002A ADC ADC Conversion Complete
9
Execution of an ISR
Program Memory
INTO_vec: 0x0002 | JMP OxFCO4
INT1_vec: 0x0004 JMP OxFCO8
. . @ Interrupt vector table
2
0x4508 Instruction
[main()
OxFCO4 | First Instruction
ISR (INTO_vec)
OxFFO8 First Instruction
ISR (INT1_vec)
10

9/26/2017

9/26/2017

Timer 0

TCCROB[CS02:CS00] selects the prescalar (1, 8, 64, etc.)

Divider Bus
/1
/8
/64 > < 8
/256 Clocked
/1024 off Mux
HW Comparator “=* >
| 1 Channel A
I OCROA <— 8 >

Clocked: Scaled TO pin !
internal clock or Port pin PD4 HW Comparator
external clock Channel B

t

OCROB

7}
@®

Timer 0 Modes of Operation

® Normal Mode
= Timer counts up from O
= Timer overflows at OxFF (i.e. 255)

* Interrupt can be generated upon Overflow

= CTC Mode
= OCROA is loaded with some value between 0 to 255
* Timer counts up from O
= A compare match (kind of an overflow) occurs when TCNTO = OCROA

* Interrupt can be generated upon Compare Match

Timer 0 Mode Selection

Table 14-8. Waveform Generation Mode Bit Description

Timer/Counter
Mode of Update of TOV Flag
Mode | WGMO02 | WGMO01 | WGMO0O | Operation TOP OCRxat | Seton''™
0 0 0 0 Normal_—> | OxFF | Immediate MAX
PWM, Phase
1 0 0 1 Correct OxFF . TOP BOTTOM
2 1 0 CTC OCRA | Immediate MAX
3 1] 1 1 Fast PWM OxFF BOTTOM MAX
4 1 0 0 Reserved - - -
PWM, Phase
5 1 0 1 Correct OCRA TOP BOTTOM
6 1 1 0 Reserved - - -
7 1 1 1 Fast PWM OCRA | BOTTOM TOP
Bit 7 8 5 4 3 1]

2
0x24 (Ox44) :comu__|_t coun'_!_wn T CoMoBT | COMOBO =1 - C] WoMOT | WoM0o) TCCRoA
ReadMWrto oW oW] T 3 n ——

Initial Value 0 0 0 0 0 0 0 0
Bt 7 6 5 4 2 1 0
0x25 (0x45) FOC0A | FOC0B - - WGMO02 cso2 cso1 | Cso0
ReadWrite w w R R RW RW RW
Initial Value 0 0 0 0 0 1] 0 0

TCCROB

Timer 0 Overflow Interrupt

Divider
/1

/8
/64
/256
/1024

TIMSKO - Timer/Counter Interrupt Mask Register

Bit 7 6 5 El 3
oo [- T —T —T—
Read/Wrte R R R R
Iniial Value 0 0 0 0 1]
TCNTO
wr ———— [
> Clocked
R off Mux
/ ‘Overflow Occurred |—>

Select
Prescaler=1

Enables
Overflow
Interrupt

{

ISR (TIMERO_OVF_vect)

// Some Code

9/26/2017

Timer 0 Compare Match Interrupt

TIMSKO - Timer/Counter Interrupt Mask Register
Bt 7 6 5 3 2 0
(OxBE) I - - | OCIEOB OCIEOA TOIED TIMSKO

4 3
Read/Write l; R R ; ; RW RW RW
Iniial Value 0 0 1] o 0 o 0 Enq bles
Compare_Match_A
Interrupt
Divider
/1 TCNTO
/8
/64 Mux [
/256 Clocked l
/1024 off Mux
- HW Comparator “=* | ———» | |SR (TIMERO_COMPA_vect)

I ' |
249 } // Some Code

Select OCROA
Prescaler=1

9/26/2017

Timer 1 Modes of Operation

® Normal Mode
= Timer counts up from O
= Timer overflows at OxFFFF (i.e. 65535)

* Interrupt can be generated upon Overflow

= CTC Mode
= OCR1A is loaded with some value between 0 to 65535
* Timer counts up from O
= A compare match (kind of an overflow) occurs when TCNT1 = OCRTA

* Interrupt can be generated upon Compare Match

Timer 1 Mode Selection

Ba
(0x80)

RaadWrte
inaal Vale 0 0

Table 15-4. Waveform Generation Mode Bit Description’”
WGM12 | WGM11 | WGMI0 | Timer/Counter Mode of Update of | TOV1 Flag
Mode | WGM13 | (CTC1) | (PWM11) | (PWM10) | Operation TOP OCRixat | Seton
o0 | o 0 [} Normal OXFFFF | Immediate | MAX
T | o ST 0 T | FWM, Prase Comect 861 | OxOOFF | TOP ["soTTOM
2 0 | o | 1 | o |PwMPrasecomecomn | morFF | ToP ['soTTom
3 | 0 | 0 1 1 1 1| PWM PhaseComent 1060 | O03FF | TOP |"'sotTom
['(1 0 [] cre [ocR1A | immedate | Max
5 | o T T T | FasPWM, 851 |‘ox00FF | BoTTOM | TOP
[L] o | 1 1 1 | o | Fast PWM, 8-ba | Ox01FF | BOTTOM | TOP
7 | o | 1 | 1 | 1 |rasPwmiom |‘ox03FF | BoTTOM | TOP
8 ! 0 0 [} PV, Phias ot Proaianey | jony BOTTOM | BOTTOM
° 1 0 0 1 g::c:“m andFequency | oepia | BOTTOM | BOTTOM
© | 1 | 0 | 1 | o |PwM PraseComent [icr1 | Top |"'sarTom
11 1 | o 1 1 | 1 | WM, Phase Comrect | OCR1A | TOP I BOTTOM
12 T+ | 1 | o | o |ecre [IcR1 | immediate | MAX
[T 1 1 | 0 | 1| (Reservea) I= |- |-
W | 1 | 1 | 1 | o |raspwm [icr1 | BoTTOM | TOP
s v [v [+ T 1] |'ocria | BoTToM | ToP

Fast PWM

location of these bits are compatible with previous versions of the timer.

4

1. The CTC1 and PWM11.0 bit definifion names are obsolete. Use the WGM12.0 definiions. However, the funcionaity and

3

Ba 4 0
TCCRIA (0x81) ICNC1 ICEST |
ReadVirse RAW W
0 0 0 0 0 Inkial Vakue []

= GM1Y

WGMTZ

0

2 1 0
C812 | Cs$11 810 TCCR1B
W RAW 2]
0 0]
17

Timer 1 Input Capture Interrupt

DATA BUS (s-bit)

ICRT = TCNT1;

// Hardware performs this

< y >
TEMP (8-bit)
3
Y
ICRnH (8bit) | ICRL (8-bit) | [TontnH @by | TONTAL @-bit)
WRITE ICRn (16-bit Register) TCNTn (16-bit Counter)
~
Source 2 [N
PDé, PD7 Aco* Acic* ICNC ICES

!

1

Analog
e /]

Source 1

Noise Edge
Canceler Detector

ICFn (Int.Req.)

PBO

IE\

ACSR - Analog Comparator Control and Status Register

—_—

Ba 7 6 5 4 3 2 1 0

0x30 (0x50) ACD ACBC | ACH | ACKE ACK ACIST ACSR
ReadMrte RW RAW RAW RAW RAW

Indial Value (] 0 [] [] 0 0

ISR (TIMER1_CAPT_vect)

{
// Some Code

9/26/2017

External Interrupts

= External Interrupts INTO & INT1
= Can detect any logic change in input pins PD2 and PD3 respectively
= Can also be configured to trigger by a falling or rising edge
= INTO has the highest priority among all interrupts, then INT1and so on...

= Pin Change Interrupts PCINT23..0
* The pin change interrupt PCIO will trigger if any enabled PCINT7..0 pin toggles
* The pin change interrupt PCIT will trigger if any enabled PCINT14..8 pin toggles
* The pin change interrupt PCI2 will trigger if any enabled PCINT23..16 pin toggles

Program
VectorNo. Address'” Source Interrupt Definition

1 0x0000" RESET External Pin. Power-on Reset. Brown-out Reset and Watchdog System Reset
2 0x0002 INTO External Interrupt Request 0

3 0x0004 INT1 External Interrupt Request 1

4 0x0006 PCINTO Pin Change Interrupt Request 0

5 0x0008 PCINT1 Pin Change Interrupt Request 1

6 0x000A PCINT2 Pin Change Interrupt Request 2

Configuring INTI

EICRA - External Interrupt Control Register A
The External Interrupt Control Register A contains control bits for interrupt sense control

Bit T 8 5 4 ' o
oo = C D scor [sco] ecea
Read'Write R R R R RAWV W
Initsal Value 0 o o o o 0 0 o
Table 12-1. Interrupt 1 Sense Control
ISC11 ISC10 Description
0 0 The low level of INT1 generates an interrupt request
0 1 Any logical change on INT1 generates an interrupt request
1 0 The falling edge of INT1 generates an interrupt request.
1 | 1 The rising edge of INT1 generates an interrupt request
EIMSK - External Interrupt Mask Register
Bt 7 [5 4 3 2 P 0
xiD(ox30) [- - | - | - - - [INTY)| INTO ' EIMSK
Read/Write R R R R R R RW RW
Intial Value 0 o 0 o o o o o

20

9/26/2017

10

9/26/2017

Configuring Pin Change Interrupts

PCICR - Pin Change Interrupt Control Register

:1] 7 6 5 4 3 2 1
(0x88) I - - | - PCIE2 | PCIE1 PCIEQ PCICR
Read/Write R R R R R RW RW TRW
Initial Valse 0] 0 0 0 0 0 0
PCMSKO - Pin Change Mask Register 0
Brt 7] 5 4 3 2 0 . "
(0x58) PCINT? | PCINT6 | PCINTS PCINT2 | PCINTI | PCINTO)l PCMSKO Corresponding Pins:
Read/Write RW RAW RW - PBO, PB1, PB2
Initial Value 0 0 0 0 0 0 0 0
PCMSK1 - Pin Change Mask Register 1
Bt T 8 5 4] 2 1 0
(0x6C) I - | PCINT14 [PCINT13 | PCINTIZ | PCINTI1 | PCINTIO | n:n:u | PcnTe | Pomski
Read/Write R RW RW RW RAW RW RAW RW
Initial Value 0 0 [0 0 0 0 0
PCMSK2 - Pin Change Mask Register 2
Bt 7 8 5 4 3 2 1 0
{0xBD) PCINTZ3 | PCINT22 | PCINTZ1 | PCINT20 | PCINTIS | PCINTIE | PCINTIT | PCINTIS | PCMSK2
ReadWrite RW W W AW RIW RW RW RW
Initial Value 0 0 0 0 0 0 0 0

11

ECE3411 —Fall 2017
Lab3c (= Lab3b continued).

Implementing a Stopwatch

Marten van Dijk
Department of Electrical & Computer Engineering
University of Connecticut
Email: marten.van_dijk@uconn.edu

Copied from Lab 4c, ECE3411 — Fall 2015, by
Marten van Dijk and Syed Kamran Haider

UCONN

Task: Accurate Stopwatch

Implement the Stopwatch using Timer1 and Capture Interrupt to measure the time
accurately down to 1ms resolution. Use TimerO to introduce Polling Delay for Switch
Debouncing.

= Connect a switch to External Interrupt INT1 (PD3)
= Pushing the switch should start the Stopwatch.
® The same switch pushed once again should show the elapsed time on LCD.

= Another button push resets the Stopwatch and makes it ready for another
measurement.

* Make sure you debounce the button pushes.

10/9/2017

Department of Electrical and Computing Engineering

UNIVERSITY OF CONNECTICUT

ECE 3411 Microprocessor Application Lab: Fall 2017

Problem Set P3

There are 3 questions in this problem set. Answer each question according to the instructions
given in at least 3 sentences on own words.

If you find a question ambiguous, be sure to write down any assumptions you make.
Be neat and legible. If we can’t understand your answer, we can’t give you credit!

Any form of communication with other students is considered cheating and will merit an F as final
grade in the course.

SUBMIT YOUR ANSWERS IN A HARDCOPY FORMAT.

Do not write in the box below

1(x/10) | 2 (x/30) | 3 (x/50) | 3 (x/10) | Total (xx/100)

Name:
Student ID:

ECE 3411 Fall 2017, Problem Set P3 Page 2 of 7

1. [10 points]: Answer the following questions:
(Encircle the correct answer for Multiple Choice Questions)

A. What register stores the values of external interrupt flags and will trigger an external interrupt if
the I-bit in SREG is set?
(a) EICRA
(b) EIMSK
(c) EIFR
(d) PCIFR

B. Given below is an ISR for external interrupt INT1 that toggles a LED whenever a switch con-
nected to INT1 pin is pushed.

/% External Interrupt INT1 ISR. Interrupt triggered at Falling Edge */
ISR(INT1_vect)

{
EIMSK &= ~(1<<INT1); // Disable External Interrupt INT1
PORTB "= (1<<PORTB5); // Toggle a LED
/% Enable External Interrupt INT1 again later in main() code */
}
What is the purpose of disabling INT1 in the ISR? What could go wrong if INT1 is not disabled
immediately?

Initials:

ECE 3411 Fall 2017, Problem Set P3 Page 3 of 7

2. [30 points]:Given below is an Interrupt Service Routine called for Timerl Compare Match A.
Assume no prescalar is set for Timer 1 and OCR1A is initially set to 100.

ISR(TIMER1_COMPA_vect)

{
OCRIA = 30;

}

100

TCNT1

30

Time

a. Indicate in the time axis given above where the ISR is being called?

b. Indicate in the time axis when OCR1A = 30 in the ISR will be executed?

c. For what value of TCNT1 will the ISR be executed next?

Initials:

ECE 3411 Fall 2017, Problem Set P3 Page 4 of 7

3.[50 points]: Assume a clock frequency of f.;;; = 20MHz and the following initialization:

DDRD = 0x10;
OCR1A = 39062;
OCR1B = 13020;
TCCR1A = 0b00110011;
TCCR1B = 0b00011101;

Answer the following questions:

a. In which mode is Timerl running?

b. What is the numerical value of ‘TOP’ for Timer1 in this mode?

¢. How much time (in seconds) does it take for Timer1 to complete one full cycle, i.e. going from
BOTTOM — TOP — BOTTOM? Be as accurate as possible in your calculations.

Initials:

ECE 3411 Fall 2017, Problem Set P3

Page 5 of 7

d. Starting from the moment of Timer1’s initialization, draw the waveforms of the TCNT1 register
value and the pin PB2 value w.r.t. time. Please draw the waveform strictly according to the timing

scale shown on X-axis, otherwise no credit will be given.

A
TOP |ommmm e
—
|_
pd
(@)
|_
BOTTOM : : : : : : : : } >
1 2 3 4 5 6 7 8 9 Time (S)
A
LY B
~
o
a
ov } } } } } } } } } >
1 2 3 4 5 6 7 8 9 Time (S)

e. In each full cycle of Timerl:

e For how much time (in seconds) is PB2 low? Be as accurate as possible in your calculations.

e For how much time (in seconds) is PB2 high? Be as accurate as possible in your calculations.

Initials:

ECE 3411 Fall 2017, Problem Set P3 Page 6 of 7

4. [10 points]: Can you shortly describe what you have learned and feel confident about using in the
future?

Initials:

ECE 3411 Fall 2017, Problem Set P3 Page 7 of 7

End of Problem Set

Please double check that you wrote your name on the front of the quiz.

Initials:

Department of Electrical and Computing Engineering

UNIVERSITY OF CONNECTICUT

ECE 3411 Microprocessor Application Lab: Fall 2017

Problem Set A3

There are 3 questions in this problem set. Answer each question according to the instructions
given in at least 3 sentences on own words.

If you find a question ambiguous, be sure to write down any assumptions you make.
Be neat and legible. If we can’t understand your answer, we can’t give you credit!

Any form of communication with other students is considered cheating and will merit an F as final
grade in the course.

SUBMIT YOUR ANSWERS IN A HARDCOPY FORMAT.

Do not write in the box below

1-A (x/10) | 1-B (x/30) | 1-C (x/10) | 1-D (x/10) | 2 (x/20) | 3 (x/20) | Total (xx/100)

Name:
Student ID:

ECE 3411 Fall 2017, Problem Set A3 Page 2 of 15

1. [60 points]: A colleague wants your help in executing a particular task for which you need to write
a code such that a task() is executed as soon as the following events occur (See Figure 1).

Switch 1 : q d
Swi1
Switch 2 : b ¢
SW2
Task() :
Starts Execution Starts
. ends .
Execution Execution

Figure 1: Timing Diagram.

a - There is a rising edge at SW1
b, c - SW2 toggles twice after event (a)

d - After events b and c occur there is a falling edge at SW1 and task() is not running at that very
moment. Note that if task() is executing at that moment then the MCU needs to wait for event (a)
to occur again.

The switches SW1 and SW2 are connected to PB1 and PD3 of ATmega328P respectively, as shown in
the Figure 3. The clock frequency (clky;o) is 16MHz.

Implement this system by answering the short questions and filling in the gaps in the code layout given
below. Notice that you are not allowed to use any software counter or _.delay ms()/_delay us(Q
routines.

Initials:

ECE 3411 Fall 2017, Problem Set A3 Page 3 of 15

The following code layout needs to be used.

#define F_CPU 16000000UL
#include <avr/io.h>
#include <avr/pgmspace.h>
#include <inttypes.h>
#include <avr/interrupt.h>
// Flag Variables

volatile uint8_t taskflag;

// Declare more variables as required in sub problem [B]

void initialize_all(void)

{
//To be filled in sub problem [A]
}
ISR(C //To be filled in sub problem [A])
{
//To be filled in sub problem [B]
}

ISR(C //To be filled in sub problem [A])

{
//To be filled in sub problem [B]

}

/* Main Function */
int main(void)

{
initialize_all(); // Initialize everything
sei(); // Enable Global Interrupts
taskflag = 0;
while(1)
{
if(taskflag == 1)
{
// In sub problem [B] you will need to decide the order of
execution of the statements 1) taskflag = 0; and 2) task(Q);
}

}

} /* End of main() */

Initials:

ECE 3411 Fall 2017, Problem Set A3 Page 4 of 15

A. Initialization: (10 points)
Complete the function initialize all(void) as instructed below:

/* Initialization function */
void initialize_all(void)

{

// Program only the necessary control register and ports

} /* End of initialize_all() */

Give the names of the interrupt vector used for interpreting the input from the 2 connected switches.(see
figure 2 provided at the end of the quiz)

(a) ISR(C)
(b) ISR(D)

C-

D -

Initials:

ECE 3411 Fall 2017, Problem Set A3 Page 5 of 15

B. Interrupt ISR: (30 points)
Complete the function ISR(C C) and ISR(D) and declare the necessary variables. Do not execute
the task() in the ISR, instead set the taskflag value accordingly. [Hint : It would be helpful to use a FSM
that tracks the event sequence.]

// Declarations

ISRC C)
{

// Code
}

Initials:

ECE 3411 Fall 2017, Problem Set A3 Page 6 of 15

ISRC D)
{

//Code

Write the code for the while loop in the main function

while(1)
{
if(taskflag == 1)
{
//Complete code here
}

Initials:

ECE 3411 Fall 2017, Problem Set A3 Page 7 of 15

C. (10 points) Extend the system to implement an additional requirement

Consider the timing diagram given below. Suppose event (a) occurs at time t1 and event (d) occurs at
time t2.

You are asked to change the code such that when event (d) happens you also check whether the time
t2 — t1 is less than 1 second. If this is not the case the task() will not be executed.

Describe in words what changes need to be included in the code. [Hint : Think about how you can
measure the time between the events a and b, the extra declarations required etc.]

Switch 1 :
witc a d
Swi
t1 t2
Switch 2 : b c
SwW2
Task() :
—
Starts Execution Starts execution whent2-t1<1
E . ends
xecution

Initials:

ECE 3411 Fall 2017, Problem Set A3 Page 8 of 15

D. (10 points) Suppose the switch SW2 is connected to PB7. Explain in words what changes you need
to incorporate in the code?

Initials:

ECE 3411 Fall 2017, Problem Set A3 Page 9 of 15

2. [20 points]: You need to design a system such that whenever a certain internal condition (checked
by the function ‘is_condition_true()’) is true, a small function executes atomically and with the
highest priority over any other code in your software. One way to do it is by using External Interrupt
INTO ISR (INTO is at pin PD2).

Complete the “initialize_all()” and “main()” functions such that INTO ISR gets triggered every-
time the function “is_condition_true()” returns true. State clearly if yo need to make any hardware
connections between any two pins etc.

You may use External Interrupts data sheet provided at the end of this booklet.

State hardware connections (if any):

/* Initialization function */
void initialize_all(void)

{

// Configure INTO® and perform any other initializations here.

// Enable Global Interrupts here.

} /* End of initialize_all() */

/* External Interrupt INT® ISR */
ISR(INTO_vect)

{
/* Function that needs to be executed atomically */
Some_Atomic_Code();
/* Any other code that you want to include in ISR goes here. */

3

/=

Initials:

ECE 3411 Fall 2017, Problem Set A3 Page 10 of 15

/* Main Function */

int main(void)

{
// Initialize everything
initialize_all(Q);

while(1l)
{
if(is_condition_true())
{
/* Your code to trigger INT® ISR goes here */
3

}

} /* End of main() */

Initials:

ECE 3411 Fall 2017, Problem Set A3 Page 11 of 15

3.[20 points]: Given that the clock frequency (clkr,0) of ATmega328P is 16MHz, implement the finite
state machine (FSM) shown in Figure 2. The state transitions are made whenever a button connected to
INTO pin (i.e. PD2) is pushed and a Falling Edge is detected at INTO. Each state produces an output
signal at PB2, and the output specifications of the states are as follows:

State_A: PB2 stays at logic LOW level.

State_ B: A non-inverting 1kHz PWM signal with 30% duty cycle is generated at PB2.

State_C: A non-inverting 2kHz PWM signal with 70% duty cycle is generated at PB2.

FallingEdge == YES

FallingEdge == NO FallingEdge == NO

FallingEdge == NO

Figure 2: State Transition Diagram of the FSM

RESET/PCINT14)
ADC5/SCL/PCINT13)

RXD/PCINT16)
ADC4/SDA/PCINT12)

INTO/PCINT18)
TXD/PCINT17)
(ADC3/PCINT11)
(ADC2/PCINT10)

NS Q®ww oo

PD;
PD
PD
PC
PC!
PC:
PC:
PC;

vee

w2 % MR
5=% (PciNT1gi0c2B/NTY) PD3 ()1 (F-------~ 24 [1 PC1 (ADC1/PCINTY)

F (PCINT20/XCK/T0) PD4 [2 23 [1 PCO (ADCO/PCINTS)
GNDC{3 221 ADCT
vee4 ! 211 GND
GNDT[5 207 AREF
veerle 191 ADC6
(PCINT6/XTAL1/TOSC1) PB6 [7 18 [1AVCC
(PCINT7/XTAL2TOSC2)PB7[]8 Lo oo em o e 17 [0 PBS (SCKIPCINTS)

ffffffff

(PCINT1/OC1A)
(PCINT2/SS/OC1B;

(PCINT3/OC2A/MOSI
(PCINT4/MISO)

%]
b2
H
(PCINT21/0COB/T1
(

(PCINT23/AIN1

(PCINT22/0COA/AINO
PCINTO/CLKO/ICP1

Figure 3: ATmega328P Hardware Configuration.

Assuming that the push button does not need debouncing, complete the following code segments.

Initials:

ECE 3411 Fall 2017, Problem Set A3 Page 12 of 15

The following code snippet provides the necessary includes, declarations, definitions and a basic layout.

#define F_CPU 16000000UL
#include <avr/io.h>
#include <inttypes.h>
#include <avr/interrupt.h>

// For State Machine
#define State_A 1
#define State_B 2
#define State_C 3
volatile uint8_t System_State;

// For PWM
volatile uintl6_t time_period;

volatile uintl6_t duty_cycle;

// Define any other variables here

/* Triggers at Falling Edge on PD2 */
ISR(INTO_vect)

{
// Calls state transition function
make_state_transition();
}
/=

// Timer 1 Compare Match A ISR (TCNT1 = OCR1A)
ISR (TIMER1_COMPA_vect)

{
OCR1A = time_period; // Update PWM time period
OCR1B = duty_cycle; // Update PWM duty cycle
}
/=

/* Main Function */
int main(void)

{
initialize_all(Q); // Initialize everything
sei(); // Enable Global Interrupts
while(1); // Nothing to do.

} /* End of main() */

Initials:

ECE 3411 Fall 2017, Problem Set A3 Page 13 of 15

A. Initialization: (10 points)
Complete the function initialize all(void) as instructed below:

/* Initialization function */

void initialize_all(void)

{
// Initializing the state variable
System_State = State_A;

/* Configure PB2 here */

/% Configure INTO® here */

/* Configure Timer 1 here */

/% Any other initializations here if needed */

} /* End of initialize_all() */

Initials:

ECE 3411 Fall 2017, Problem Set A3 Page 14 of 15

B. State Transition Function Implementation: (10 points)
Write the function make_state_transition() to implement the FSM.

/% State transition function called by INT® ISR */
void make_state_transition()

{

} /* end of make_state_transition() */

Initials:

ECE 3411 Fall 2017, Problem Set A3 Page 15 of 15

End of Problem Set

Please double check that you wrote your name on the front of the quiz.

Initials:

Department of Electrical and Computing Engineering

UNIVERSITY OF CONNECTICUT

ECE 3411 Microprocessor Application Lab: Fall 2017

Independent LAB3

There are 2 independent lab questions in LAB3.

You may not discuss independent labs in any way, shape, or form with anyone else and you are
not allowed to lookup solutions from other sources.

Any form of communication with other students or looking up solutions is considered cheating
and will merit an F as final grade in the course.

Name:
Student ID:

ECE 3411 Fall 2017, LAB3 Page 2 of 10

1. [Pass/Fail points]: In this task, we are going to design a Stopwatch (1ms resolution) for measuring
the total time and the individual lap times of a car racer. A detailed breakdown of the task is given
below, whereas the detailed timing diagram of the stopwatch is shown in Figure 1.

Notice that for this task, delay ms()/_delay us() function calls are not allowed (except for the ones
already present in 1cd_1ib.c).

A

>
»

| Total Time |

1 1

i i

1 1

| Debounce Delay Debounce Delay Debounce Delay | Debounce Delay
1 16ms 16ms 16ms | 16ms
~ g A -~
1 : 1 : 1 : 1 1
| ! ‘ ! ‘ ! i |
1 : 1 : 1 : 1 1
: 1 : 1 : 1 : :
1 : 1 : 1 : 1 1
1 1 1 1 1 1 1 1
i ! i ! i ! i i
Lo Lap Time {1 lapTime | Final Lap Time oo
 — > > —' a '
i ! ' ! ! i i
| ! ‘ ! ! ' ‘
1 : 1 : : 1 1
! ! ! 1 Bestlap ! ! !
i ' i » Time ' ' i
' ! : ! ! ' '
| ! ' ! ! ' ‘
L P : -

/ / / / time
SW1 Push SW2 Push SW2 Push SW1 Push
(Start) (Lap) (Lap) (End)

Figure 1: Stopwatch Timing Diagram.

a. Using Pin Change Interrupts, read two push switches SW1 and SW1 connected to PB1 and PB7
respectively, and design a basic system that does the following:
e When SW1 is pressed, LED1 turns on. This shows the start of the race.
o While LED1 is on, if SW2 is pressed then LED2 toggles. This shows completion of a lap.
o Finally if SW1 is pressed again, both LEDs turn off. This shows end of the race.

Use Timer® to count a debounce delay of 16ms for SW1 and SW2.

b. Extend Task(a) and use Timerl to implement the following basic stopwatch:
o When SW1 is pressed (i.e. start of the race), start Timerl to count the number of millisec-
onds. You may want to use a software counter to keep track of long time intervals.

e When SW1 is pressed again (i.e. end of the race), record the current time. This shows end of
the race.

e Print the total elapsed time (in milliseconds) on the first row of the LCD.

Make sure that you debounce SW1 with a 16ms delay using Timer®, yet start/capture Timerl at
the very moment of the button push (as shown in Figure 1) instead of 16ms later.
Hint: You can read the current value of Timer1 by reading TCNT1 register anywhere in the code.

Initials:

ECE 3411 Fall 2017, LAB3 Page 3 of 10

c. Extend Task(b) to implement the following functionality of the stopwatch:

e If SW2 is pressed while the stopwatch is counting (i.e. during the race), record the current
time. This shows completion of a lap. Notice that Timer1 continues to count the total race
time.

e Print on the second row of the LCD the time elapsed (in milliseconds) between this SW2
push and the previous most recent button push event. This shows the lap time of the racer.
E.g. if SW2 is pressed for the first time after the start of the race then print the total time
elapsed since SW1 push. Otherwise print the time elapsed since last SW?2 push (as shown in
Figure 1).

Make sure that you debounce SW2 with a 16ms delay using Timer®, yet capture Timer1l at the
very moment of the button push (as shown in Figure 1) instead of 16ms later.

d. Extend Task(c) to complete the stopwatch implementation as follows:

o Finally when SW1 is pressed again (i.e. at the end of the race), record the final lap time which
is the time since the last SW2 push (as shown in Figure 1).

e Print the total race time on first row and the best lap time (i.e. the smallest) among all the
recorded lap times on the second row of the LCD.

Hint: Determine and record the smallest lap time at each SW2 push.

Initials:

ECE 3411 Fall 2017, LAB3 Page 4 of 10

2. [Pass/Fail points]: In this task, we are going to implement a simplified version of Morse Codes for
a few English alphabets shown in Table 1. In order to produce an alphabet, the following two conditions
must be met:

(a) A particular sequence of SW1 and SW2 button pushes as shown in Table 1.

(b) The push sequence must be completed within a 2 seconds window (starting from the first push).

Table 1: Simplified Morse Code Table.

Alphabet | Button Push Sequence within 2 seconds window.

A SWI1, SW2

B SW2,SW1, SW1, SW1
C SW2, SW1, SW2, SW1
D SW2, SW1, SW1

Invalid | Any other sequence.

The clock frequency (clkr;0) is 16MHz.
The switches SW1 and SW2 are connected to PB1 and PB7 of ATmega328P respectively, as shown in
the Figure 2. Both SW1 and SW2 need a debouncing delay of 4ms.

e
_ S22 -5
PEeEPRCEE
EEEGSxzz
GZ—aoooo
eereoaa
T
EDD(/)OOOO
Z><><LLIDDDD
sStbrrLg
N O © 0 ¥ O N
00000000
[T e W s W a W s i o R s W 0 9
OO0
N~ O O O~ © Wn
MO M O NN N NN
(PCINT19/0C2B/INT1) PD3 [] 1 @- ———————— - 24[1PC1(ADC1/PCINTY)
(PCINT20/XCK/TO) PD4 {2 ! ! 23[7PCO (ADCO/PCINTS)
GNDO3 , 22[1ADC7
veers ! I 21[1GND
vee GNDL|5 | 20[0AREF
vcce 1 I 19[71ADC6
SW2 (PCINT6/XTAL1/TOSC1) PB6 (] 7 : | 18[1AvcC
=% o (PCINT7/XTAL2TOSC2) PB7 []8 k- o - mm = = = 4 17 [PB5 (SCK/PCINT5)
47 O «~ N M < v ©
O - - - v - =
o000 000
L ON~NO —~— N M
[e e R a o a Iy a Qi aa Ry
[a Y a W o T o My o My a iy a Y o Y
vee ST @so
c2zas223
2<<288=%=
SISO I
SWi 85ESCasE
o< = [ON¥)
EdfEfzsce
5 —2 o=
Oz &) L5
g ¢ <

t

Figure 2: ATmega328P Hardware Configuration.

Implement this system by filling in the gaps in the code layout given below.
Notice that you are not allowed to use _delay ms()/_.delay_us() routines.

Initials:

ECE 3411 Fall 2017, LAB3 Page 5 of 10

The following code snippet provides the necessary includes, declarations and definitions.

#define F_CPU 16000000UL
#include <avr/io.h>
#include <avr/pgmspace.h>
#include <inttypes.h>
#include <avr/interrupt.h>
#include <util/delay.h>
#include <stdio.h>
#include <string.h>
#include "lcd_lib.h"

#define SW1_PRESSED ("PINB & (1<<PINB1))
#define SW2_PRESSED ("PINB & (1<<PINB7))

// Flag Variables

volatile uint8_t DebounceFlagl;
volatile uint8_t DebounceFlag2;
volatile uint8_t indexl1;
volatile uint8_t index2;

// Push Sequence Encoding
volatile uint8_t encodings[4][5] =

{
{1, 2, 0, 0, 0}, // A’s encoding is accessed as encodings[0]
{2, 1, 1, 1, 0}, // B’s encoding is accessed as encodings[1]
{2, 1, 2, 1, 0}, // C’s encoding is accessed as encodings[2]
{2, 1, 1, 0, 0} // D’s encoding is accessed as encodings[3]
b

// Index to Character Mapping
volatile uint8_t mapping[4] = {’A’, ’'B’, 'C’, 'D’};

// Save the Button Pushes in this array
volatile uint8_t sequence[5];

/* Main Function */
int main(void)

{
initialize_all(Q); // Initialize everything
sei(Q); // Enable Global Interrupts
while(1); // Nothing to do.

} /* End of main() */

Initials:

ECE 3411 Fall 2017, LAB3 Page 6 of 10

A. Initialization:
Complete the function initialize all(void) as instructed below:

/* Initialization function */
void initialize_all(void)
{
// Initializing the LCD.
initialize_LCDQ);
LCDcursorOFF() ;
LCDclr();

// Initializing the flag variables
DebounceFlagl = DebounceFlag2 = 0;

index1l = index2 = 0;

// Enable Pin Change Interrupts for PB1 and PB7 here

// Setup Timer® in CTC mode to generate Compare Match Interrupt A every 4ms
// Set Timer® Prescaler in ‘start_timer®()’ function on the next page.

// Setup Timerl in CTC mode to generate Compare Match Interrupt A every 2s

} /* End of initialize_all() */

Initials:

ECE 3411 Fall 2017, LAB3 Page 7 of 10

B. Timer0 Prescaler & Pin Change Interrupt ISR:
Complete the function start_timer®() and ISR(PCINTO® vect) as instructed below:

/* Starts Timer® */
void start_timer®()

{

// Select and set appropriate prescaler for Timer® here

/* Stops Timer® */
void stop_timer0®()

{
TCCROB = 0x00; // Prescaler = NONE
TCNT® = 0; // Resets the timer
}
/=

/* Pin Change Interrupt ® ISR */
ISR(PCINTO_vect)

{
// Disable the Pin Change Interrupt ® here

// Update any flags etc.

// Start Timer® to count Debounce Delay
start_timer0(Q);

} /* end of ISR(PCINTO_vect) */

Initials:

ECE 3411 Fall 2017, LAB3 Page 8 of 10

C. Timer(0 Compare Match ISR:
Complete ISR(TIMERO_COMPA vect) as instructed below:

/% Timer® Compare Match A ISR */
ISR(TIMERO_COMPA_vect)
{
// Stopping Timer®
stop_timer®();

// Read and record the button push in ‘sequence’ array

// Re-enable Pin Change Interrupt
PCICR |= (1<<PCIE®);

} /* end of ISR(TIMERO_COMPA_vect) */

Initials:

ECE 3411 Fall 2017, LAB3 Page 9 of 10

D. Timer1l Compare Match ISR:
Complete ISR(TIMER1_COMPA vect) as instructed below:

/* Timerl Compare Match A ISR */
ISR (TIMER1_COMPA_vect)
{

// Print the Alphabet corresponding to the received push sequence on LCD
// Print ‘I’ if an invalid sequence is received.

// Clear the received sequence buffer
for(index2=0; index2<4; index2++)
sequence[index2] = 0;

// Reset index2
index2 = 0;

} /* end of ISR(TIMER1_COMPA_vect) */
/== //

Initials:

ECE 3411 Fall 2017, LAB3 Page 10 of 10

End of Independent LAB3

Initials:

