
9/26/2017

1

ECE3411 – Fall 2017

Marten van Dijk
Department of Electrical & Computer Engineering

University of Connecticut
Email: marten.van_dijk@uconn.edu

Debugging Techniques

Lecture 3a.

Copied from Debugging.pdf, ECE3411 – Fall 2015,
by Marten van Dijk and Syed Kamran Haider

Debugging Techniques
 Debugging in Atmel Studio

 Simulator mode

 On-chip debugging using debugWire interface for Xplained Mini kits

 Debugging using Assert library

 Debugging using Hardware Peripherals
 LEDs, LCD

 Observing output signals using Oscilloscope

2

9/26/2017

2

Debugging in Atmel Studio (Simulator Mode)
 Create a new Atmel Studio project

 Select “Simulator” from the Tool Selection tab

3

Starting a Debugging Session
 Build the project. (Hit F7)

 From Debug tab, select “Start Debugging and Break”

 The debugger pauses at the start of main.

4

9/26/2017

3

Various Windows in Debugging Session

5

I/O view Window shows
peripheral register

values

Processor’s view
Window shows
processor status

Watch Window shows
variable values

Adding a Breakpoint in Debugging Session
 Select any instruction in the code

 Right Click and insert a Breakpoint as follows

6

9/26/2017

4

Continue to the next Breakpoint
 After inserting a breakpoint, click Continue (F5)

 The program will stop at Breakpoint as shown in the right window.

7

Observing Register/Variable Values at a Breakpoint
 Select particular peripheral and then the register to observe the value. (shown on left)

 Type variable names from your code in Watch Window to monitor their values. (shown on
right)
 Notice that I have ran through the loop once  counter = 1

8

9/26/2017

5

Other Commands in Debugging Session
Inside ‘Debug’ tab, you’ll see various useful debugging commands.

 ‘Stop Debugging’ exists the debugging session.

 ‘Continue’ run the code until the next breakpoint.

 ‘Restart’ restarts the debugging session and runs the code.

 ‘Step Into’ steps through the code line by line.

 ‘Step Over’ jumps over a function and stops after executing it.

 ‘Step Out’ returns from the current function and stops.

 ‘Run to cursor’ runs down to where the cursor is.

 ‘Reset’ command resets the current debugging session.

9

Debugging in Atmel Studio (debugWire Mode)
 On-chip debugging for Xplained Mini kits using debugWire interface is also quite similar to the

simulator mode.
 Simulator mode simulates the code as if it is running on the actual microcontroller
 debugWire allows you to actually run the code on the microcontroller while you debug it step by step.

 Connect the Xplained Mini board with your computer

 Go to the Tool tab and select mEDBG with debugWire interface.

10

9/26/2017

6

Starting a Debugging Session (debugWire Mode)
 Build the project (hit F7) and from Debug tab, select “Start Debugging and Break”

 Most likely you’ll see an error message asking you to enable DWEN fuse (as shown below).
 DWEN fuse (debugWire Enable fuse) enables the debugWire interface on your microcontroller.
 Click ‘Yes’ on the error message window and enable DWEN fuse.

 The debugger will pause at the start of main, just like simulator mode.

 Now you may use similar debugging techniques as done in Simulator mode
 Use breakpoints to stop at a particular instruction.
 Use Watch windows to observe/set program variables.
 Use I/O view to observe/set the peripheral registers.

11

Exiting a Debugging Session (debugWire Mode)
 It is really important to exit the debugWire debugging session in a

proper way!

 To exit the debugging session, click on “Disable debugWire and Close”.
 This will first disable the DWEN fuse in the microcontroller.

 Then it will close the debugging session.

 If DWEN fuse is not disabled, you’ll not be able to program the
microcontroller in ISP mode (which we want to use most frequently).

12

9/26/2017

7

Debugging using Assert library
 http://people.ece.cornell.edu/land/courses/ece4760/Debugging/index.htm has

many great suggestions

 One can use the assert library (http://en.wikipedia.org/wiki/Assert.h) to test
assertions in code

 Example:

13

//set up the debugging utility ASSERT
#define __ASSERT_USE_STDERR
#include <assert.h>

//test assertion - will print message if argument is NOT true;
assert(time<10);

Debugging using Hardware Peripherals
 Debugging can also be performed by hardware peripherals.

 By setting GPIO pins, for example, one can test the frequency of ISRs or certain program conditions
(i.e. PORTD |= 0x01; when something happens) and measure results with an oscilloscope.

 Once the LCD lab has been done, one can also display variables and conditions on
the screen as code is executed, if there are problems.

14

10/9/2017

1

ECE3411 – Fall 2017

Marten van Dijk
Department of Electrical & Computer Engineering

University of Connecticut
Email: marten.van_dijk@uconn.edu

Debugging using Atmel Studio,
Measuring Human Reaction Time,
Timer 1 Capture Interrupt

Lab3a.

Copied from Lab 5c and Lab 4a, ECE3411 – Fall
2015, by Marten van Dijk and Syed Kamran Haider

Task 1: Debugging
1. Download the buggy code (Lab3aBuggy.c) from Piazza under resources.

 Correct the syntax errors in it.

2. Read the slide deck about debugging techniques.
 The spec of the buggy code is that we want to use eight LEDs to show the number of button presses,

but if you program your board with this buggy code, you will find that the count keeps incrementing.

 Use simulator or DebugWire to help you fix this code.

2

10/9/2017

2

Starting a Debugging Session
 Create a new Atmel Studio project

 Select “Simulator” from the Tool Selection tab

3

Starting a Debugging Session
 Build the project. (Hit F7)

 From Debug tab, select “Start Debugging and Break”

 The debugger pauses at the start of main.

4

10/9/2017

3

Start of Debugging Session
 The debugger pauses at the start of main.

5

Peripheral Registers in Debugging Session
 Click on I/O view button to see all peripheral registers in an I/O Window

6

I/O View Button

I/O Registers
Window

10/9/2017

4

Adding a Breakpoint in Debugging Session
 Select any instruction in the code

 Right Click and insert a Breakpoint as follows

7

Continue to the next Breakpoint
 After inserting a breakpoint, click Continue (F5)

 The program will stop at Breakpoint as shown in the right window.

8

10/9/2017

5

Observing Register/Variable Values at a Breakpoint
 Select particular peripheral and then the register to observe the value. (shown on left)

 Type variable names from your code in Watch Window to monitor their values. (shown on right)

9

Files for today’s Lab Tasks
 Download the zipped file Lab3a.zip from piazza under resources section.

 This file contains three C code files.
 Fix_it.c

10

10/9/2017

6

Task2: Measuring the Human Reaction Time
Implement a system to measure the Human Reaction Time down to a resolution of 1ms.

In particular:

1. Print a message on UART for the user to get ready

2. Wait for some random amount of time, e.g. between 2 to 5 seconds

3. Turn on a LED & start Timer1

4. The user is supposed to push a button as soon as the LED turns on

5. Read Timer1 to measure the time between the two events, i.e. tuning on the LED and
detecting a button push

6. Print the reaction time in milliseconds on UART

11

Task3: Experimenting with Capture Interrupt
Run the sample code demonstrating “Timer1 Capture Interrupt” provided in Lec2c.

 Connect PB3 (OC2A) to PD7 (AIN1)

 This program uses Timer1 Capture Interrupt to accurately measure Polling time for
Task1().

 It then prints the actual time (200 cycles) measured by Timer1 and the time observed
by polling mechanism.

 Your task is to vary the time “t1” that controls the printing rate.

 Why does the observed polling time vary with “t1”?

12

9/26/2017

1

ECE3411 – Fall 2017

Marten van Dijk
Department of Electrical & Computer Engineering

University of Connecticut
Email: marten.van_dijk@uconn.edu

External Interrupts
Pin Change Interrupts
Task Based Programming

Lecture 3b.

Based on the Atmega328P datasheet

Copied from Lecture 3c and Lecture 4a, ECE3411 – Fall 2015,
by Marten van Dijk and Syed Kamran Haider

External Interrupts
 Chapter 12 datasheet

 INT0 & INT1
 Can be triggered by a falling or rising edge or a low level  EICRA (External Interrupt Control

Register A)

 Low level interrupt is detected asynchronously  can be used to wake from idle mode as well as
sleep modes (will see one such example in a forthcoming lecture)
 If used for wake-up from power-down, the required level must be held long enough for the MCU to complete the wake-up to

trigger the level interrupt. (Start-up time defined by SUT and CKSEL fuses, chapter 8)

 PCINT23..0
 The pin change interrupt PCI0 will trigger if any enabled PCINT7..0 pin toggles

 The pin change interrupt PCI1 will trigger if any enabled PCINT14..8 pin toggles

 The pin change interrupt PCI2 will trigger if any enabled PCINT23..16 pin toggles

2

9/26/2017

2

Interrupt Vectors
 http://www.atmel.com/webdoc/AVRLibcReferenceManual/group__avr__interrupts.

html

3

Interrupt Vector Table

 Notice that the external interrupts and pin interrupt are at the top of the table

 They will be the first to be checked after an ISR finishes  They have priority

 Usage: Program a SW interrupt for executing an atomic piece of code
 A pin is set as an output

 Main code toggles the pin

 This creates a PCINT HW event and sets a corresponding flag

 Interrupt unit will scan this flag first and prioritizes the corresponding PCINT ISR (i.e., if during toggling another ISR is called due to some other HW event, then once
this ISR is finished the PCINT ISR will be called next)

 The PCINT ISR will be fully executed without interruption  an atomic execution

4

9/26/2017

3

Example PCINT21 = PD5

5

DDRD |= (1<<DDD5); //PD5=PCINT21 is output

PCMSK2 = (1<<PCINT21); //toggling PD5 sets flag

PCICR |= (1<<PCIE2); //Enable interrupt for
 //PCIFR.PCIF2

When PD5 toggles, flag PCIFR & (1<<PCIF2)
changes from 0 (0 as an integer represents 0x00)
to (1<<PCIF2) (which, represented as an integer,
equals 4)

Write
• ISR(PCINT2_vect){ Atomic code;}
• If the atomic code needs to be executed in the main program, just toggle PORTD ^= (1<<PORTD5);

Sequence of Events

6

1. In main program toggle PORTD ^= (1<<PORTD5);
2. PCIFR.PCIF2 is set to 1
3. PCICR |= (1<<PCIE2);  Interrupt unit checks PCIFR.PCIF2
4. If currently an ISR is executing, finish its execution and start the next instruction in the main program
5. As soon as the current instruction in the main program is finished, the interrupt unit checks for flags

with enabled interrupts
6. The interrupt unit does this in round robin fashion but starts at the top of the interrupt vector table

after an ISR is finished  prioritizes RESET over external interrupts over pin interrupts over the rest
7. Looks up address corresponding to ISR(PCINT2_vect), saves register state, puts PC on stack, etc.
8. Execute without any interruption ISR(PCINT2_vect){ Atomic code;}
9. During RETI state is restored, flag PCIFR.PCIF2 is cleared, and PC points to the next instruction in the

main program

NOTE: Instead of PORTD ^= (1<<PORTD5); the main code can also directly set PCIFR |= (1<<PCIF2);

9/26/2017

4

INT1
 Programming external interrupt INT1 = PD3 on falling edge

 Switch connected to PD3 (set to PD3 to input): DDRD &= ~(1<<DDD3);
 #define SW_PRESSED !(PIND & (1<<PIND3))
 If SW_PRESSED {…} checks whether PIND & (1<<PIND3) == 0
 PD3 low means pressed and PD3 high means not pressed: Want to detect falling edge

 EICRA |= (1<<ISC11);

 EIMSK |= (1<<INT1);

Need to write ISR and

implement a debounce state

machine …
7

INT1

8

#define SW_PRESSED !(PIND & (1<<PIND3))

void Initialize(void)
{
 DDRD &= ~(1<<DDD3);
 EICRA |= (1<<ISC11);

EIMSK |= (1<<INT1);
 …. Timer 0 ….
 poll_time = POLLING_DELAY;
 DebounceFlag = 0;
}

void ISR(TIMER0_COMPA_vect)
{
 if ((poll_time>0) && (DebounceFlag==1)) --poll_time;

…
}

ISR(INT1_vect)
{
 EIMSK &= ~(1<<INT1); // Disable interrupt

… record this event …
DebounceFlag = 1;

}

void PollButton(void)
{
 if SW_PRESSED { … latest recorded event is for a button push …}
 DebounceFlag = 0;
 poll_time = POLLING_DELAY;
 EIMSK |= (1<<INT1);
}

int main(void)
{
 Initialize();
 sei();

 while(1)
 {
 if (poll_time == 0) {PollButton();}
 …
 }
}

9/26/2017

5

Debouncing with a Pin Interrupt
 Instead of using INT1 we can use a pin interrupt

 The pin toggles:
 Wrap all ISR code in an extra if statement

 If SW_PRESSED { .. Code .. }

 Now we will only execute Code if the button transitions from not-pressed to pressed.

9

Stop Watch
 The ISR records the moment of the falling edge

 Represented by a SW counter maintained in ISR(TIMER0_COMPA_vect)

 Only if the button is really pressed, PollButton() will set a flag telling the main
program that the recorded event is valid.

 The main while loop polls the flag and as soon as it is set it e.g. prints the recorded
time after which the flag is set back to invalid.

 All kinds of variations possible

10

9/26/2017

6

Example Problem 1
Consider the following code:

11

ISR(TIMER0_COMPA_vect)
{
 if (flag_timer > 0) {flag_timer--;}
 if (flag_timer == 0) {flag = ??; }
}

ISR(INT1_vect)
{
 flag = ??;
 flag_timer = ??;
}

Assume ISR(TIMER0_COMPA_vect) is triggered every 1ms. How should the question marks be filled in such that
• as soon as ISR(INT1_vect) is triggered, then flag is set to 1, and
• as soon as 1 second (with approx 1ms precision) has passed since the last time ISR(INT1_vect) was triggered, flag is set to 0.

Example Problem 1
Solution:

12

ISR(TIMER0_COMPA_vect)
{
 if (flag_timer > 0) {flag_timer--;}
 if (flag_timer == 0) {flag = 0; }
}

ISR(INT1_vect)
{
 flag = 1;
 flag_timer = 1000;
}

Assume ISR(TIMER0_COMPA_vect) is triggered every 1ms. How should the question marks be filled in such that
• as soon as ISR(INT1_vect) is triggered, then flag is set to 1, and
• as soon as 1 second (with approx 1ms precision) has passed since the last time ISR(INT1_vect) was triggered, flag is set to 0.

9/26/2017

7

Example Problem 2
 One of your colleagues has already written the code for a task() (which takes about 100 micro

seconds) and asks you to write:

 The main code int main(void), which
 starts by setting registers, enabling interrupts, and executing task() for a first time, and
 concludes with a while loop which starts executing task() as soon as within a 1 second (with approx 1ms precision) time

frame each of the two pins 1 and 32 have signaled a falling edge after the last time task() finished executing

 Example: Consider the moment when task() finished executing at for example t=10.0001
seconds.

 Suppose that pin 1 signals falling edges at times t1=13, t1=13.7, and t1=14.3 seconds, pin 32
signals falling edges at times t0 = 12, t0= 13.5, and t_0=14.2 seconds. Assume for the purpose
of this example that no other falling edges happen.

 After time t=10.0001 when task() finished executing, the first moment each of the two pins signal
a falling edge within a 1 second time frame happens at t=13.5. So, task() should start executing
at time t=13.5.

 Suppose it finishes at t=13.5001. After time t=13.5001, the first moment each of the two pins all
signal a falling edge within a 1 second time frame happens at t=14.2. So, task() should again
start executing at time t=14.2.

13

Example Problem 2
 Besides the main code you are also required to write the appropriate ISRs and

declare variables. Assume the MCU runs at 20MHz. You can use the next two pages
to write your code.

 Hint: As in problem 1, program a flag0 and a flag1 for each of the two pins: As
soon as they sum up to 2, each pin triggered an ISR within the last 1 second
timeframe.

14

9/26/2017

8

Example Problem 2

15

// Put the declaration of your global variables here:
#define t_flag 1000 // 1000ms = 1 second

volatile int flag0, flag1;
volatile int flag0_timer, flag1_timer;

ISR(TIMER0_COMPA_vect)
{
 // Put your code here:
 if (flag0_timer > 0) {flag0_timer--;}
 if (flag0_timer == 0) {flag0 = 0; }

 if (flag1_timer > 0) {flag1_timer--;}
 if (flag1_timer == 0) {flag1 = 0; }
}

ISR(INT0_vect)
{
 // Put the code of your second ISR here:
 flag0 = 1;
 flag0_timer = t_flag;
}

ISR(INT1_vect)
{
 // Put the code of your third ISR here:
 flag1 = 1;
 flag1_timer = t_flag;
}

Example Problem 2

16

int main(void)
{
 // Put your code of the main body (including initializations) here:

 // An accurate 1ms timer (as explained in class):
 TIMSK0 = 2; // enable interrupt
 TCCR0A = 0x02; // return on clear-on-match
 TCCR0B = 0x02; // prescalar @ 8
 OCR0A = 249; // each time tick is 8(OCR0A+1)/20MHz = 1ms exactly
 // An accurate enough timer is needed otherwise the flag_timers drift with respect
 // to real time and we may not meet the specification of ~1ms precision.

 // Initialize external interrupts INT0 (= pin 32) and INT1 (= pin 1) on falling edges
 DDRD = 0x00; // D.2 = pin 32 and D.3 = pin 1 are inputs
 EICRA = (1<<ISC01) | (1<<ISC11);
 EIMSK = (1<<INT0) | (1<<INT1);

 task_timer = t_task;
 flag0 = 0;
 flag1 = 0;

 // Globally enable interrupts
 sei();

9/26/2017

9

Example Problem 2

17

 // Execute task() before entering the while loop
 // This allows us to formally meet the specifications of the program
 task();

 while (1)
 {
 if (flag0 + flag1 == 2) // See hint
 {
 task();
 // All flags should be reset, since we just finished executing task()
 flag0 = 0;
 flag1 = 0;
 }
 }

 return 0;
}

Example Problem 3
 One of your colleagues has already written the code for two tasks task1() and

task2() (each taking only about 100 micro seconds) and asks you to write:
The main code int main(void), which
 starts by setting registers and enabling interrupts, and
 concludes with a while loop which

 starts executing task1() every 1 millisecond (as accurate as possible), and

 starts executing task2() as soon as

1. a rising edge is received over pin 1 since the last time task2() finished executing and

2. at least 1 second has passed since the last time task2() finished executing.

Example: task2() finished executing at time t=0.

(a) If the next rising edge after t=0 is detected at e.g. time t=300 milliseconds, then the while loop waits another 700
milliseconds (such that 1 full second has passed) before it starts executing task2().

(b) If the next rising edge after t=0 is detected at e.g. time t=1100 milliseconds, then the while loop immediately starts
executing task2() (since 1 full second has already passed).

 Besides the main code you are also required to write the appropriate ISRs.
Assume the MCU runs at 20MHz.

18

9/26/2017

10

Example Problem 3

19

// Put the declaration of your global variables here:
// define t1 as 1ms and t2 as 1000ms = 1 second
#define t1 1
#define t2 1000

volatile int task1_timer;
volatile int task2_timer;
volatile int flag;

ISR(TIMER0_COMPA_vect)
{
 // Put the code of your first ISR here:
 // Set up virtual timers
 if (task1_timer > 0) {task1_timer--;}
 if (task2_timer > 0) {task2_timer--;}
}

ISR(INT1_vect)
{
 // Put the code of your second ISR here:
 // Set flag
 flag = 1;
}

Example Problem 3

20

int main(void)
{
 // Put the code the main body here:

 // An accurate 1ms timer (as explained in class):
 TIMSK0 = 2; // enable interrupt
 TCCR0A = 0x02; // return on clear-on-match
 TCCR0B = 0x02; // prescalar @ 8
 OCR0A = 249; // each time tick is 8(OCR0A+1)/20MHz = 1ms exactly

 // Initialize external interrupt INT1 (= pin 1) on rising edge
 DDRD = 0x00; // D.3 = pin 1 is an input
 EICRA = (1<<ISC11) | (1<<ISC10);
 EIMSK = (1<<INT1);

 task1_timer = t1;
 task2_timer = t2;
 flag = 0;

 // Globally enable interrupts
 sei();

9/26/2017

11

Example Problem 3

21

 while (1)
 {
 if (task1_timer == 0)
 {
 task1_timer = t1; // Before calling task1(), otherwise task1() is called
 // every 1.1 ms where the 100 micro second delay comes
 // from the execution of task1()
 task1();
 }

 if (task2_timer == 0) && (flag == 1)
 {
 task2();
 flag = 0; // As soon as task2() is finished we want to be able
 // to detect external interrupts
 task2_timer == t2; // After calling task2() since we measure the time that
 // passes since task2() has finished executing for the
 // last time
 }
 }

 return 0;
}

10/9/2017

1

ECE3411 – Fall 2017

Marten van Dijk
Department of Electrical & Computer Engineering

University of Connecticut
Email: marten.van_dijk@uconn.edu

Implementing a Stopwatch

Lab3b.

Copied from Lab 4b, ECE3411 – Fall 2015, by
Marten van Dijk and Syed Kamran Haider

Task 1: Simple Stopwatch
Implement a Stopwatch using Timer0 that measures the time down to 1ms resolution.

 Connect a switch to External Interrupt INT1 (PD3)

 Pushing the switch should start the Stopwatch.

 The same switch pushed once again should show the elapsed time on LCD.

 Another button push resets the Stopwatch and makes it ready for another
measurement.

 Make sure you debounce the button pushes.

2

10/9/2017

2

Task 2: Improved Stopwatch
Implement a Stopwatch by reading TCNT1 of Timer1 to measure the time down to 1ms
resolution. Use Timer0 to introduce Polling Delay for Switch Debouncing.

 Connect a switch to External Interrupt INT1 (PD3)

 Pushing the switch should start the Stopwatch.

 The same switch pushed once again should show the elapsed time on LCD.

 Another button push resets the Stopwatch and makes it ready for another
measurement.

 Make sure you debounce the button pushes.

3

9/26/2017

1

ECE3411 – Fall 2017

Marten van Dijk
Department of Electrical & Computer Engineering

University of Connecticut
Email: marten.van_dijk@uconn.edu

Review Session

Lecture 3c.

Copied from Lecture 4b, ECE3411 – Fall 2015, by
Marten van Dijk and Syed Kamran Haider

Hardware Registers of a Port
Each Port on the Mega AVRs has three hardware registers associated to it:

 DDRx : Data-Direction Register for Port x
 Controls whether each pin is configured for input (0) or output (1).

 To enable a pin as output, a ‘1’ is written to that bit in DDRx.

 By default, all pins are initialized as inputs (DDRx = 0x00).

 PORTx : Port x Data Register
 Sets an output pin to logic HIGH (1) or LOW (0).

 E.g. writing a ‘1’ to a bit position in PORT register will produce logic HIGH at that pin & vice versa.

 PINx : Port x Input Pins Address
 Used to read the logic values of each pin that’s configured as input.

 E.g. a value ‘0’ of a bit of PIN register indicates a low voltage at that pin & vice versa.

2

9/26/2017

2

Debouncing of Bouncing Signals
 A button push results in a bouncy transition

 Due to physical limitations of the contact surfaces

 Bouncing is often very fast  orders of few 𝑢𝑠 to 𝑚𝑠

 Debouncing in software
 Key idea: Read  Wait  Verify

 Wait time needs to be carefully controlled

 E.g. wait time should be at least 300𝑢𝑠 for this example.

3

Software Debouncing State Machine

4

No_Push
Maybe
Pushed

Maybe
NotPushed

Pushed

Pushed?

NotPushed?

NotPushed?

Pushed?

Pushed?

Pushed?

NotPushed?

NotPushed?

9/26/2017

3

LCD Data Write (4-bit Mode)

5

void LcdDataWrite(uint8_t da)
{
 // First send higher 4-bits
 DATA_PORT = (DATA_PORT & 0xf0) | (da >> 4); //give the higher half of cm to DATA_PORT
 CTRL_PORT |= (1<<RS); //setting RS=1 to choose the data register
 CTRL_PORT |= (1<<ENABLE); //setting ENABLE=1

 _delay_ms(1); // allow the LCD controller to successfully read command in

 CTRL_PORT &= ~(1<<ENABLE); // Setting ENABLE=0

 _delay_ms(1); // allow long enough delay

 // Send lower 4-bits
 DATA_PORT = (DATA_PORT & 0xf0) | (da & 0x0f); //give the lower half of cm to DATA_PORT
 CTRL_PORT |= (1<<RS); //setting RS=1 to choose the data register
 CTRL_PORT |= (1<<ENABLE); //setting ENABLE=1

 _delay_ms(1); // allow the LCD controller to successfully read command in

 CTRL_PORT &= ~(1<<ENABLE); // Setting ENABLE=0

 _delay_ms(1); // allow long enough delay
}

1

2

3

4

Blocking vs. Non Blocking LCD Write Timing

Time (ms)

Fu
nc

tio
ns

0

main

lcd_write

_delay_ms

Time (ms)

Fu
nc

tio
ns

0

main

lcd_write

Wasted Cycles Wasted Cycles

Saved Cycles Saved Cycles

Blocking Writes:

Non-Blocking Writes:

9/26/2017

4

Interrupts & ISRs
A few questions:

 Who calls the ISR?

 Can you “pass” a variable to an ISR?

 What is the return value of an ISR?

 How does the AVR know where to find the code for the corresponding ISR?

7

Interrupts & ISRs
 Who calls the ISR?

 The hardware!

 Can you “pass” a variable to an ISR?
 No! The variable must be globally defined.

 What is the return value of an ISR?
 Nothing! However, it can store some value in a global variable.

 How does the AVR know where to find the code for the corresponding ISR?
 Through the Interrupt Vector Table.

8

9/26/2017

5

ATmega328P Interrupt Vector Table
 The AVR knows what type of

interrupt has occurred.

 It jumps to the program address
specified in Interrupt Vector Table.
 E.g. Address 0x0002 for INT0

 There it sees another Jump
instruction which takes it to the ISR
code.

9

Execution of an ISR

10

Program Memory

JMP 0xFC04

Instruction

First Instruction

0x0002

0x4508

0xFC04

First Instruction0xFF08

Interrupt vector table

main()

ISR (INT0_vec)

ISR (INT1_vec)

JMP 0xFC080x0004

INT0_vec :

INT1_vec :

……

…
…

…
…

1

2

3

9/26/2017

6

Timer 0

11

Divider
/1
/8
/64
/256
/1024

Clocked: Scaled
internal clock or
external clock

Mux

TCCR0B[CS02:CS00] selects the prescalar (1, 8, 64, etc.)

Clocked
off Mux

T0 pin
Port pin PD4

Channel A

TCNT0

HW Comparator “=“

HW Comparator “=“

OCR0A

OCR0B

Channel B

Bus

8

8

8

Timer 0 Modes of Operation
 Normal Mode

 Timer counts up from 0

 Timer overflows at 0xFF (i.e. 255)

 Interrupt can be generated upon Overflow

 CTC Mode
 OCR0A is loaded with some value between 0 to 255

 Timer counts up from 0

 A compare match (kind of an overflow) occurs when TCNT0 = OCR0A

 Interrupt can be generated upon Compare Match

12

9/26/2017

7

Timer 0 Mode Selection

13

Timer 0 Overflow Interrupt

14

Divider
/1
/8
/64
/256
/1024

Select
Prescaler=1

Mux
Clocked
off Mux

01242532542550

TCNT0

Overflow Occurred ISR (TIMER0_OVF_vect)
{
 // Some Code
}

Enables
Overflow
Interrupt

9/26/2017

8

Timer 0 Compare Match Interrupt

15

Divider
/1
/8
/64
/256
/1024

Select
Prescaler=1

Mux
Clocked
off Mux

01242472482490

TCNT0

ISR (TIMER0_COMPA_vect)
{
 // Some Code
}

Enables
Compare_Match_A
Interrupt

HW Comparator “=“

249

OCR0A

Timer 1 Modes of Operation
 Normal Mode

 Timer counts up from 0

 Timer overflows at 0xFFFF (i.e. 65535)

 Interrupt can be generated upon Overflow

 CTC Mode
 OCR1A is loaded with some value between 0 to 65535

 Timer counts up from 0

 A compare match (kind of an overflow) occurs when TCNT1 = OCR1A

 Interrupt can be generated upon Compare Match

16

9/26/2017

9

Timer 1 Mode Selection

17

Timer 1 Input Capture Interrupt

18

Source 1
PB0

Source 2
PD6, PD7

ISR (TIMER1_CAPT_vect)
{
 // Some Code
}

// Hardware performs this
ICR1 = TCNT1;

9/26/2017

10

External Interrupts
 External Interrupts INT0 & INT1

 Can detect any logic change in input pins PD2 and PD3 respectively

 Can also be configured to trigger by a falling or rising edge

 INT0 has the highest priority among all interrupts, then INT1and so on…

 Pin Change Interrupts PCINT23..0
 The pin change interrupt PCI0 will trigger if any enabled PCINT7..0 pin toggles

 The pin change interrupt PCI1 will trigger if any enabled PCINT14..8 pin toggles

 The pin change interrupt PCI2 will trigger if any enabled PCINT23..16 pin toggles

19

Configuring INT1

20

9/26/2017

11

Configuring Pin Change Interrupts

21

Corresponding Pins:
PB0, PB1, PB2

10/9/2017

1

ECE3411 – Fall 2017

Marten van Dijk
Department of Electrical & Computer Engineering

University of Connecticut
Email: marten.van_dijk@uconn.edu

Implementing a Stopwatch

Lab3c (= Lab3b continued).

Copied from Lab 4c, ECE3411 – Fall 2015, by
Marten van Dijk and Syed Kamran Haider

Task: Accurate Stopwatch
Implement the Stopwatch using Timer1 and Capture Interrupt to measure the time
accurately down to 1ms resolution. Use Timer0 to introduce Polling Delay for Switch
Debouncing.

 Connect a switch to External Interrupt INT1 (PD3)

 Pushing the switch should start the Stopwatch.

 The same switch pushed once again should show the elapsed time on LCD.

 Another button push resets the Stopwatch and makes it ready for another
measurement.

 Make sure you debounce the button pushes.

2

Department of Electrical and Computing Engineering

UNIVERSITY OF CONNECTICUT

ECE 3411 Microprocessor Application Lab: Fall 2017

Problem Set P3
There are 3 questions in this problem set. Answer each question according to the instructions
given in at least 3 sentences on own words.

If you find a question ambiguous, be sure to write down any assumptions you make.
Be neat and legible. If we can’t understand your answer, we can’t give you credit!

Any form of communication with other students is considered cheating and will merit an F as final
grade in the course.

SUBMIT YOUR ANSWERS IN A HARDCOPY FORMAT.

Do not write in the box below

1 (x/10) 2 (x/30) 3 (x/50) 3 (x/10) Total (xx/100)

Name:

Student ID:

ECE 3411 Fall 2017, Problem Set P3 Page 2 of 7

1. [10 points]: Answer the following questions:
(Encircle the correct answer for Multiple Choice Questions)

A. What register stores the values of external interrupt flags and will trigger an external interrupt if
the I-bit in SREG is set?

(a) EICRA
(b) EIMSK
(c) EIFR
(d) PCIFR

B. Given below is an ISR for external interrupt INT1 that toggles a LED whenever a switch con-
nected to INT1 pin is pushed.

/* External Interrupt INT1 ISR. Interrupt triggered at Falling Edge */

ISR(INT1_vect)

{

EIMSK &= ˜(1<<INT1); // Disable External Interrupt INT1

PORTB ˆ= (1<<PORTB5); // Toggle a LED

/* Enable External Interrupt INT1 again later in main() code */

}

What is the purpose of disabling INT1 in the ISR? What could go wrong if INT1 is not disabled
immediately?

Initials:

ECE 3411 Fall 2017, Problem Set P3 Page 3 of 7

2. [30 points]:Given below is an Interrupt Service Routine called for Timer1 Compare Match A.
Assume no prescalar is set for Timer 1 and OCR1A is initially set to 100.

ISR(TIMER1_COMPA_vect)

{

OCR1A = 30;

}

TC
N
T1

Time

0

100

30

a. Indicate in the time axis given above where the ISR is being called?

b. Indicate in the time axis when OCR1A = 30 in the ISR will be executed?

c. For what value of TCNT1 will the ISR be executed next?

Initials:

ECE 3411 Fall 2017, Problem Set P3 Page 4 of 7

3. [50 points]: Assume a clock frequency of fclk = 20MHz and the following initialization:

DDRD = 0x10;

OCR1A = 39062;

OCR1B = 13020;

TCCR1A = 0b00110011;

TCCR1B = 0b00011101;

Answer the following questions:

a. In which mode is Timer1 running?

b. What is the numerical value of ‘TOP’ for Timer1 in this mode?

c. How much time (in seconds) does it take for Timer1 to complete one full cycle, i.e. going from
BOTTOM→ TOP→ BOTTOM? Be as accurate as possible in your calculations.

Initials:

ECE 3411 Fall 2017, Problem Set P3 Page 5 of 7

d. Starting from the moment of Timer1’s initialization, draw the waveforms of the TCNT1 register
value and the pin PB2 value w.r.t. time. Please draw the waveform strictly according to the timing
scale shown on X-axis, otherwise no credit will be given.

TC
N

T1

Time (s)

BOTTOM

TOP

P
B

2

0 V

5V

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 Time (s)

e. In each full cycle of Timer1:

• For how much time (in seconds) is PB2 low? Be as accurate as possible in your calculations.

• For how much time (in seconds) is PB2 high? Be as accurate as possible in your calculations.

Initials:

ECE 3411 Fall 2017, Problem Set P3 Page 6 of 7

4. [10 points]: Can you shortly describe what you have learned and feel confident about using in the
future?

Initials:

ECE 3411 Fall 2017, Problem Set P3 Page 7 of 7

End of Problem Set
Please double check that you wrote your name on the front of the quiz.

Initials:

Department of Electrical and Computing Engineering

UNIVERSITY OF CONNECTICUT

ECE 3411 Microprocessor Application Lab: Fall 2017

Problem Set A3
There are 3 questions in this problem set. Answer each question according to the instructions
given in at least 3 sentences on own words.

If you find a question ambiguous, be sure to write down any assumptions you make.
Be neat and legible. If we can’t understand your answer, we can’t give you credit!

Any form of communication with other students is considered cheating and will merit an F as final
grade in the course.

SUBMIT YOUR ANSWERS IN A HARDCOPY FORMAT.

Do not write in the box below

1-A (x/10) 1-B (x/30) 1-C (x/10) 1-D (x/10) 2 (x/20) 3 (x/20) Total (xx/100)

Name:

Student ID:

ECE 3411 Fall 2017, Problem Set A3 Page 2 of 15

1. [60 points]: A colleague wants your help in executing a particular task for which you need to write
a code such that a task() is executed as soon as the following events occur (See Figure 1).

Figure 1: Timing Diagram.

a - There is a rising edge at SW1

b, c - SW2 toggles twice after event (a)

d - After events b and c occur there is a falling edge at SW1 and task() is not running at that very
moment. Note that if task() is executing at that moment then the MCU needs to wait for event (a)
to occur again.

The switches SW1 and SW2 are connected to PB1 and PD3 of ATmega328P respectively, as shown in
the Figure 3. The clock frequency (clkI/O) is 16MHz.

Implement this system by answering the short questions and filling in the gaps in the code layout given
below. Notice that you are not allowed to use any software counter or delay ms()/ delay us()
routines.

Initials:

ECE 3411 Fall 2017, Problem Set A3 Page 3 of 15

The following code layout needs to be used.

#define F_CPU 16000000UL

#include <avr/io.h>

#include <avr/pgmspace.h>

#include <inttypes.h>

#include <avr/interrupt.h>

// Flag Variables

volatile uint8_t taskflag;

// Declare more variables as required in sub problem [B]

void initialize_all(void)

{

//To be filled in sub problem [A]

}

ISR(//To be filled in sub problem [A])

{

//To be filled in sub problem [B]

}

ISR(//To be filled in sub problem [A])

{

//To be filled in sub problem [B]

}

/* Main Function */

int main(void)

{

initialize_all(); // Initialize everything

sei(); // Enable Global Interrupts

taskflag = 0;

while(1)

{

if(taskflag == 1)

{

// In sub problem [B] you will need to decide the order of

execution of the statements 1) taskflag = 0; and 2) task();

}

}

} /* End of main() */

Initials:

ECE 3411 Fall 2017, Problem Set A3 Page 4 of 15

A. Initialization: (10 points)
Complete the function initialize all(void) as instructed below:

/* Initialization function */

void initialize_all(void)

{

// Program only the necessary control register and ports

} /* End of initialize_all() */

Give the names of the interrupt vector used for interpreting the input from the 2 connected switches.(see
figure 2 provided at the end of the quiz)

(a) ISR(C)

(b) ISR(D)

C -

D -

Initials:

ECE 3411 Fall 2017, Problem Set A3 Page 5 of 15

B. Interrupt ISR: (30 points)
Complete the function ISR(C) and ISR(D) and declare the necessary variables. Do not execute
the task() in the ISR, instead set the taskflag value accordingly. [Hint : It would be helpful to use a FSM
that tracks the event sequence.]

// Declarations

ISR(C)

{

// Code

}

Initials:

ECE 3411 Fall 2017, Problem Set A3 Page 6 of 15

ISR(D)

{

//Code

}

Write the code for the while loop in the main function

while(1)

{

if(taskflag == 1)

{

//Complete code here

}

}

Initials:

ECE 3411 Fall 2017, Problem Set A3 Page 7 of 15

C. (10 points) Extend the system to implement an additional requirement
Consider the timing diagram given below. Suppose event (a) occurs at time t1 and event (d) occurs at
time t2.
You are asked to change the code such that when event (d) happens you also check whether the time
t2− t1 is less than 1 second. If this is not the case the task() will not be executed.
Describe in words what changes need to be included in the code. [Hint : Think about how you can
measure the time between the events a and b, the extra declarations required etc.]

Initials:

ECE 3411 Fall 2017, Problem Set A3 Page 8 of 15

D. (10 points) Suppose the switch SW2 is connected to PB7. Explain in words what changes you need
to incorporate in the code?

Initials:

ECE 3411 Fall 2017, Problem Set A3 Page 9 of 15

2. [20 points]: You need to design a system such that whenever a certain internal condition (checked
by the function ‘is condition true()’) is true, a small function executes atomically and with the
highest priority over any other code in your software. One way to do it is by using External Interrupt
INT0 ISR (INT0 is at pin PD2).
Complete the “initialize all()” and “main()” functions such that INT0 ISR gets triggered every-
time the function “is condition true()” returns true. State clearly if yo need to make any hardware
connections between any two pins etc.
You may use External Interrupts data sheet provided at the end of this booklet.

State hardware connections (if any):

//---

/* Initialization function */

void initialize_all(void)

{

// Configure INT0 and perform any other initializations here.

// Enable Global Interrupts here.

} /* End of initialize_all() */

//---

/* External Interrupt INT0 ISR */

ISR(INT0_vect)

{

/* Function that needs to be executed atomically */

Some_Atomic_Code();

/* Any other code that you want to include in ISR goes here. */

}

//---

Initials:

ECE 3411 Fall 2017, Problem Set A3 Page 10 of 15

/* Main Function */

int main(void)

{

// Initialize everything

initialize_all();

while(1)

{

if(is_condition_true())

{

/* Your code to trigger INT0 ISR goes here */

}

}

} /* End of main() */

//---

Initials:

ECE 3411 Fall 2017, Problem Set A3 Page 11 of 15

3. [20 points]: Given that the clock frequency (clkI/O) of ATmega328P is 16MHz, implement the finite
state machine (FSM) shown in Figure 2. The state transitions are made whenever a button connected to
INT0 pin (i.e. PD2) is pushed and a Falling Edge is detected at INT0. Each state produces an output
signal at PB2, and the output specifications of the states are as follows:

State A: PB2 stays at logic LOW level.

State B: A non-inverting 1kHz PWM signal with 30% duty cycle is generated at PB2.

State C: A non-inverting 2kHz PWM signal with 70% duty cycle is generated at PB2.

State_A State_B

State_C

FallingEdge == YES

FallingEdge == NO

FallingEdge == YES

FallingEdge == NO

FallingEdge == YES

FallingEdge == NO

Figure 2: State Transition Diagram of the FSM

Figure 3: ATmega328P Hardware Configuration.

Assuming that the push button does not need debouncing, complete the following code segments.

Initials:

ECE 3411 Fall 2017, Problem Set A3 Page 12 of 15

The following code snippet provides the necessary includes, declarations, definitions and a basic layout.

#define F_CPU 16000000UL

#include <avr/io.h>

#include <inttypes.h>

#include <avr/interrupt.h>

// For State Machine

#define State_A 1

#define State_B 2

#define State_C 3

volatile uint8_t System_State;

// For PWM

volatile uint16_t time_period;

volatile uint16_t duty_cycle;

// Define any other variables here

//---

/* Triggers at Falling Edge on PD2 */

ISR(INT0_vect)

{

// Calls state transition function

make_state_transition();

}

//---

// Timer 1 Compare Match A ISR (TCNT1 = OCR1A)

ISR (TIMER1_COMPA_vect)

{

OCR1A = time_period; // Update PWM time period

OCR1B = duty_cycle; // Update PWM duty cycle

}

//---

/* Main Function */

int main(void)

{

initialize_all(); // Initialize everything

sei(); // Enable Global Interrupts

while(1); // Nothing to do.

} /* End of main() */

Initials:

ECE 3411 Fall 2017, Problem Set A3 Page 13 of 15

A. Initialization: (10 points)
Complete the function initialize all(void) as instructed below:

/* Initialization function */

void initialize_all(void)

{

// Initializing the state variable

System_State = State_A;

/* Configure PB2 here */

/* Configure INT0 here */

/* Configure Timer 1 here */

/* Any other initializations here if needed */

} /* End of initialize_all() */

Initials:

ECE 3411 Fall 2017, Problem Set A3 Page 14 of 15

B. State Transition Function Implementation: (10 points)
Write the function make state transition() to implement the FSM.

/* State transition function called by INT0 ISR */

void make_state_transition()

{

} /* end of make_state_transition() */

Initials:

ECE 3411 Fall 2017, Problem Set A3 Page 15 of 15

End of Problem Set
Please double check that you wrote your name on the front of the quiz.

Initials:

Department of Electrical and Computing Engineering

UNIVERSITY OF CONNECTICUT

ECE 3411 Microprocessor Application Lab: Fall 2017

Independent LAB3
There are 2 independent lab questions in LAB3.

You may not discuss independent labs in any way, shape, or form with anyone else and you are
not allowed to lookup solutions from other sources.

Any form of communication with other students or looking up solutions is considered cheating
and will merit an F as final grade in the course.

Name:

Student ID:

ECE 3411 Fall 2017, LAB3 Page 2 of 10

1. [Pass/Fail points]: In this task, we are going to design a Stopwatch (1ms resolution) for measuring
the total time and the individual lap times of a car racer. A detailed breakdown of the task is given
below, whereas the detailed timing diagram of the stopwatch is shown in Figure 1.
Notice that for this task, delay ms()/ delay us() function calls are not allowed (except for the ones
already present in lcd lib.c).

Total Time

𝑡𝑖𝑚𝑒
SW1 Push

(Start)

Debounce Delay
16ms

Debounce Delay
16ms

SW1 Push
(End)

Debounce Delay
16ms

Debounce Delay
16ms

SW2 Push
(Lap)

SW2 Push
(Lap)

Lap Time Final Lap TimeLap Time

Best Lap
Time

Figure 1: Stopwatch Timing Diagram.

a. Using Pin Change Interrupts, read two push switches SW1 and SW1 connected to PB1 and PB7
respectively, and design a basic system that does the following:

• When SW1 is pressed, LED1 turns on. This shows the start of the race.
• While LED1 is on, if SW2 is pressed then LED2 toggles. This shows completion of a lap.
• Finally if SW1 is pressed again, both LEDs turn off. This shows end of the race.

Use Timer0 to count a debounce delay of 16ms for SW1 and SW2.

b. Extend Task(a) and use Timer1 to implement the following basic stopwatch:

• When SW1 is pressed (i.e. start of the race), start Timer1 to count the number of millisec-
onds. You may want to use a software counter to keep track of long time intervals.

• When SW1 is pressed again (i.e. end of the race), record the current time. This shows end of
the race.

• Print the total elapsed time (in milliseconds) on the first row of the LCD.

Make sure that you debounce SW1 with a 16ms delay using Timer0, yet start/capture Timer1 at
the very moment of the button push (as shown in Figure 1) instead of 16ms later.
Hint: You can read the current value of Timer1 by reading TCNT1 register anywhere in the code.

Initials:

ECE 3411 Fall 2017, LAB3 Page 3 of 10

c. Extend Task(b) to implement the following functionality of the stopwatch:

• If SW2 is pressed while the stopwatch is counting (i.e. during the race), record the current
time. This shows completion of a lap. Notice that Timer1 continues to count the total race
time.

• Print on the second row of the LCD the time elapsed (in milliseconds) between this SW2
push and the previous most recent button push event. This shows the lap time of the racer.
E.g. if SW2 is pressed for the first time after the start of the race then print the total time
elapsed since SW1 push. Otherwise print the time elapsed since last SW2 push (as shown in
Figure 1).

Make sure that you debounce SW2 with a 16ms delay using Timer0, yet capture Timer1 at the
very moment of the button push (as shown in Figure 1) instead of 16ms later.

d. Extend Task(c) to complete the stopwatch implementation as follows:

• Finally when SW1 is pressed again (i.e. at the end of the race), record the final lap time which
is the time since the last SW2 push (as shown in Figure 1).

• Print the total race time on first row and the best lap time (i.e. the smallest) among all the
recorded lap times on the second row of the LCD.

Hint: Determine and record the smallest lap time at each SW2 push.

Initials:

ECE 3411 Fall 2017, LAB3 Page 4 of 10

2. [Pass/Fail points]: In this task, we are going to implement a simplified version of Morse Codes for
a few English alphabets shown in Table 1. In order to produce an alphabet, the following two conditions
must be met:

(a) A particular sequence of SW1 and SW2 button pushes as shown in Table 1.

(b) The push sequence must be completed within a 2 seconds window (starting from the first push).

Table 1: Simplified Morse Code Table.

Alphabet Button Push Sequence within 2 seconds window.
A SW1, SW2
B SW2, SW1, SW1, SW1
C SW2, SW1, SW2, SW1
D SW2, SW1, SW1

Invalid Any other sequence.

The clock frequency (clkI/O) is 16MHz.
The switches SW1 and SW2 are connected to PB1 and PB7 of ATmega328P respectively, as shown in
the Figure 2. Both SW1 and SW2 need a debouncing delay of 4ms.

Figure 2: ATmega328P Hardware Configuration.

Implement this system by filling in the gaps in the code layout given below.
Notice that you are not allowed to use delay ms()/ delay us() routines.

Initials:

ECE 3411 Fall 2017, LAB3 Page 5 of 10

The following code snippet provides the necessary includes, declarations and definitions.

#define F_CPU 16000000UL

#include <avr/io.h>

#include <avr/pgmspace.h>

#include <inttypes.h>

#include <avr/interrupt.h>

#include <util/delay.h>

#include <stdio.h>

#include <string.h>

#include "lcd_lib.h"

#define SW1_PRESSED (˜PINB & (1<<PINB1))

#define SW2_PRESSED (˜PINB & (1<<PINB7))

// Flag Variables

volatile uint8_t DebounceFlag1;

volatile uint8_t DebounceFlag2;

volatile uint8_t index1;

volatile uint8_t index2;

// Push Sequence Encoding

volatile uint8_t encodings[4][5] =

{

{1, 2, 0, 0, 0}, // A’s encoding is accessed as encodings[0]

{2, 1, 1, 1, 0}, // B’s encoding is accessed as encodings[1]

{2, 1, 2, 1, 0}, // C’s encoding is accessed as encodings[2]

{2, 1, 1, 0, 0} // D’s encoding is accessed as encodings[3]

};

// Index to Character Mapping

volatile uint8_t mapping[4] = {’A’, ’B’, ’C’, ’D’};

// Save the Button Pushes in this array

volatile uint8_t sequence[5];

//---

/* Main Function */

int main(void)

{

initialize_all(); // Initialize everything

sei(); // Enable Global Interrupts

while(1); // Nothing to do.

} /* End of main() */

//---

Initials:

ECE 3411 Fall 2017, LAB3 Page 6 of 10

A. Initialization:
Complete the function initialize all(void) as instructed below:

/* Initialization function */

void initialize_all(void)

{

// Initializing the LCD.

initialize_LCD();

LCDcursorOFF();

LCDclr();

// Initializing the flag variables

DebounceFlag1 = DebounceFlag2 = 0;

index1 = index2 = 0;

// Enable Pin Change Interrupts for PB1 and PB7 here

// Setup Timer0 in CTC mode to generate Compare Match Interrupt A every 4ms

// Set Timer0 Prescaler in ‘start_timer0()’ function on the next page.

// Setup Timer1 in CTC mode to generate Compare Match Interrupt A every 2s

} /* End of initialize_all() */

Initials:

ECE 3411 Fall 2017, LAB3 Page 7 of 10

B. Timer0 Prescaler & Pin Change Interrupt ISR:
Complete the function start timer0() and ISR(PCINT0 vect) as instructed below:

/* Starts Timer0 */

void start_timer0()

{

// Select and set appropriate prescaler for Timer0 here

}

//---

/* Stops Timer0 */

void stop_timer0()

{

TCCR0B = 0x00; // Prescaler = NONE

TCNT0 = 0; // Resets the timer

}

//---

/* Pin Change Interrupt 0 ISR */

ISR(PCINT0_vect)

{

// Disable the Pin Change Interrupt 0 here

// Update any flags etc.

// Start Timer0 to count Debounce Delay

start_timer0();

} /* end of ISR(PCINT0_vect) */

Initials:

ECE 3411 Fall 2017, LAB3 Page 8 of 10

C. Timer0 Compare Match ISR:
Complete ISR(TIMER0 COMPA vect) as instructed below:

/* Timer0 Compare Match A ISR */

ISR(TIMER0_COMPA_vect)

{

// Stopping Timer0

stop_timer0();

// Read and record the button push in ‘sequence’ array

// Re-enable Pin Change Interrupt

PCICR |= (1<<PCIE0);

} /* end of ISR(TIMER0_COMPA_vect) */

Initials:

ECE 3411 Fall 2017, LAB3 Page 9 of 10

D. Timer1 Compare Match ISR:
Complete ISR(TIMER1 COMPA vect) as instructed below:

/* Timer1 Compare Match A ISR */

ISR (TIMER1_COMPA_vect)

{

// Print the Alphabet corresponding to the received push sequence on LCD

// Print ‘I’ if an invalid sequence is received.

// Clear the received sequence buffer

for(index2=0; index2<4; index2++)

sequence[index2] = 0;

// Reset index2

index2 = 0;

} /* end of ISR(TIMER1_COMPA_vect) */

// -- //

Initials:

ECE 3411 Fall 2017, LAB3 Page 10 of 10

End of Independent LAB3

Initials:

