
9/5/2017

1

ECE3411 – Fall 2017

Marten van Dijk
Department of Electrical & Computer Engineering

University of Connecticut
Email: marten.van_dijk@uconn.edu

Interrupts & Interrupt Service Routines (ISRs)

Lecture 2a.

Based on the Atmega328P datasheet and material
from Bruce Land’s video lectures at Cornel

Copied from Lecture 2c, ECE3411 – Fall 2015, by
Marten van Dijk and Syed Kamran Haider

Interrupts

2

Lower range of program storage in flash:
If you want to set the mask bit of an interrupt, i.e., you
enable a certain interrupt, then you must write a
corresponding ISR (interrupt service routine).

The table contains the address of the ISR that you write
(upon the HW event that will cause the interrupt, the
program counter will jump to the address indicated by the
table to execute the programmed ISR).

Program memory has 2^16 registers
� an address has 16 bits, e.g., 0xabcd
� 0xabcd is stored in two 8-bit registers
� Interrupt vector table associates interrupt

vectors to addresses 0x0000, 0x0002,
0x0004 etc. (by increments of 2)

9/5/2017

2

Program Layout
� Initialization procedure:

� Set up tables,

� Initialize timers,

� Do bookkeeping before you can put on interrupts

� Turn on the master interrupt bit: This is the I-bit in register SREG, the C-macro sei() does this for you

3

Program Layout
� Main() executes slow background code forever � you never exit main in a MCU

� Interrupt driven tasks are asynchronously called from main, for example:

� a HW timer may cause a HW event every 1000 cycles, upon which in the corresponding ISR a SW counter is incremented;

� upon reaching an a-priori defined maximum value, the background code calls a corresponding procedure which executes some
task, and upon returning the SW counter is reset to 0

� ISRs have no parameters, no return value, they save CPU state (and C does this for
you); they are called by HW events:
� E.g., the bit value for position RXC0 in UCSR0A goes to high when receiving a character is completed

� If the mask bit in UCSR0B for position RXCIE0 is set [meaning that an interrupt is enabled for the flag
(UCSR0A & (1<<RXC0))], then the MCU will jump to the address of the ISR as indicated by the
interrupt vector table for source USART, RX.

� It takes about 75 cycles to go in and out of an ISR; another 32 cycles to safe state of the MCU (32
registers); another 7/8 cycles overhead.

4

9/5/2017

3

AVR Architecture

5

Execution of an ISR

6

Address space of
program memory:

Program memory
values (in flash)

0xabcd

Interrupt
vector
table

Instructions
(binary) main

program

Instructions
(binary) ISR
of UART, RX

Instruction

First Instruction

0x0024

0x70a1

0xabcd

Interrupt unit scans flags in
table in round-robin fashion

Execution of main code

Two processes that run in parallel

1. Character receive complete
� UART RX HW event which makes

flag UCSR0A & (1<<RXC0) non-zero
� If UCSR0B |= (1<<RXCIE0), i.e., ISR UART RX is

enabled, then the interrupt unit sees flag when
checking for the UART RX HW event

� Interrupt unit looks at the Interrupt vector table
at position 0x0024 for UART RX, and reads
address 0xabcd

2. Program counter (PC) points at 0x70a1,
corresponding instruction is executed to
completion
� 0x70a1 is pushed on to the PC stack
� PC becomes 0xabcd
� ISR UART RX is executed
� Upon return from interrupt, the PC stack

pops the value 0x70a1
� PC gets the next address and main

program continues its execution

9/5/2017

4

Execution of an ISR
1. Some HW event sets a flag in some register, e.g., (UCSR0A & (1<<RXC0)) goes to high

� If the corresponding interrupt is enabled, e.g., by initially programming UCSR0B |=
(1<<RXCIE0), then this flag is detected by the Interrupt Unit of the MCU which scans the
flags which correspond to the vector table in round robin fashion

2. If the CPU is executing an ISR, then finish the ISR, else finish current instruction

3. Push the Program Counter (PC) on the stack

4. Clear the I-bit in SREG (after this, none of the interrupts are enabled)

5. The CPU jumps to the vector table and clears the corresponding flag: I.e., clear flag in
register UCSR0A as in UCSR0A &= ~(1<<RXC0)

6. The CPU jumps to the ISR indicated by the address in the vector table

7. The compiler created a binary which saves state, executes your ISR code, restores state,
and returns: return from interrupt (RETI)

8. RETI enables the I-bit in SREG and re-checks the interrupt flag registers in the vector table
(since other HW events may have occurred in the meantime) 7

Problems
� Example: An ISR with print statement calls the print procedure, which buffers the

characters to be printed in HW since printing is slow.

� Now, the HW executes the printing statement in parallel with the rest of the ISR.

� The ISR finishes.

� Before the print statement is finished the ISR is triggered again

� Not even a single character may be printed!!

8

9/5/2017

5

Problems
� In your ISR you may enable the master interrupt bit � this creates a nested interrupt
� not recommended

� Memory of one event deep: e.g.,
� MCU handles a first flag of (UCSR0A & (1<<RXC0))

� After clearing this flag, the same HW event happens again which will again set the interrupt flag
vector for (UCSR0A & (1<<RXC0)) (which will be handled after the current interrupt)

� But more interrupts for (UCSR0A & (1<<RXC0)) are forgotten while handling the current interrupt
(first flag)!!

� You need to write efficient ISR code to avoid missing HW events, which may cause your application to
be unreliable.

9

Interrupt Service Routine (ISR)
� http://www.atmel.com/webdoc/AVRLibcReferenceManual/group__avr__interrupts.

html

� #include <avr/interrupt.h>

� We need to program ISR(USART_RX_vect)

10

9/5/2017

6

ISR(USART_RX_vect)
� fscanf uses:

� During the while loop other tasks need to wait � fscanf’s implementation is blocking

� Need non-blocking code: write a ISR which waits until the character is there

11

int uart_getchar(FILE *stream)
{

…
while (!(UCSR0A & (1<<RXC0))) ;
c = UDR0;
…
uart_putchar(c, stream);
…
}

ISR(USART_RX_vect)

12

….

// To make sure that the program does not need to wait
// we write our own get_string procedure.
// This requires a circular buffer, index, and a ready flag.
#define r_buffer_size 50
char r_buffer[r_buffer_size];
int r_index;
volatile char r_ready;

// After getstr(), the USART receive interrupt is enabled.
// The interrupt loads r_buffer, when done r_ready is set to 1.
void getstr(void)
{

r_ready = 0; // clear ready flag
r_index = 0; // clear buffer
UCSR0B |= (1<<RXCIE0);
}
….

The volatile keyword warns the compiler that the declared
variable can change at any time without warning and that
the compiler shouldn’t optimize it away no matter how
static it seems

9/5/2017

7

ISR(USART_RX_vect)

13

int main(void)
{

// Initializations etc.
sei(); // Enable global interrupt
getstr();
etc.

while(1)
{
if (r_ready == 1) {Task_InterpretReadBuffer(); getstr();}
if Condition2 { Task2(…); ResetCond2; }
etc.
}

return 0;
}

• The while loop represents task-based programming,
which we repeat throughout the course: While a
string is being inputted by the user, other tasks (e.g.
Task2) can be executed in parallel

• No stalling � Efficient execution
• Modularity as a Computer System Design

Principle

• The getstr() can be called in any subroutine, not only
in the main while loop

• Inside getstr() r_ready and r_index are reset to 0 �
Task_InterpretReadBuffer() may also call getstr() at
the end of its code; Here we show the reset explicitly
in the main while loop.

• It is often more natural to merge Task() and
ResetCond(), especially if the reset should happen at
the start of a task rather than at the end

ISR(USART_RX_vect)

14

ISR(USART_RX_vect)
{

char r_char = UDR0;
// Echo character back out over the system such that a human user
//can see this
UDR0 = r_char;

if (r_char != '\r') // compare to the enter character
{
if (r_char == 127) // compare to the backspace character

// (using '\b' instead of 127 does not work!)
{

putchar(' '); // erase character on screen
putchar('\b'); // backspace
--r_index; // erase previously read character in r_buffer
}
else

{
r_buffer[r_index] = r_char;
if (r_index < r_buffer_size-1) {r_index++;}
else {r_index = 0;}

}
}
else
{

putchar('\n'); // new line
r_buffer[r_index]=0; //strings are terminated

// with a 0
r_ready = 1;
UCSR0B ^=(1<<RXCIE0); // turn off receive

// interrupt
}
}

Implements a simple line editor; we can add more line editing commands from the original uart_getchar(…)!

9/5/2017

1

ECE3411 – Fall 2017

Marten van Dijk
Department of Electrical & Computer Engineering

University of Connecticut
Email: marten.van_dijk@uconn.edu

General Purpose Digital Input (Debouncing)
Non-Blocking UART (using ISRs)

Lab 2a.

Copied from Lab 3a, ECE3411 – Fall 2015, by
Marten van Dijk and Syed Kamran Haider

Recap
In the last lab, we implemented the following:

 Reading a Non-Debounced Switch
 MCU may see a lot of glitches in the input from a Non-Debounced switch

 Reading a Debounced Switch
 3-state Debounce State Machine filters out glitches, but not all of them!

 Display some results on LCD

2

9/5/2017

2

Do you see any problems with this
Debounce State Machine?

3

State: NoPush

Check: button push?

State: MaybePush

Check: button push?

State: Pushed

Check: button push?

Yes Yes: PushFlag = 1;

NoNo: PushFlag =0;

No Yes

• This state machine filters out glitches which result in NoPush MaybePush NoPush transitions
• What happens if a glitch causes Pushed  MaybePush Pushed transitions sequence?

• The software mistakenly thinks that a new button-push has occurred
• Fix this problem in Task 1 of this lab

Push Switch to use

4

Switch 2

9/5/2017

3

LCD Interfacing
 We are going to use the LCD in 4-bit mode

 Only 4 data wires are required instead of 8

 LCD pin assignment is as follows:

5

No. Symbol Connections with ATmega328P

1, 3 VSS, VEE GND

2 VCC 5V

4 RS PC4

5 R/W GND (Always Write to LCD)

6 E PC5

7-10 DB0-DB3 Not Connected

11-14 DB4-DB7 PC0-PC3

Pin1: VSS  GND
Pin2: VCC  5V
Pin3: VEE  GND
Pin4: RS  PC4
Pin5: R/W  GND
Pin6: E  PC5
Pin7: DB0  N/C
Pin8: DB1  N/C
Pin9: DB2  N/C
Pin10: DB3  N/C
Pin11: DB4  PC0
Pin12: DB5  PC1
Pin13: DB6  PC2
Pin14: DB7  PC3

Pin15:
CATHODE
 GND

Pin16:
ANODE
 5V

LCD Test Program

6

// ------- Preamble -------- //
#define F_CPU 16000000UL /* Tells the Clock Freq to the Compiler. */
#include <avr/io.h> /* Defines pins, ports etc. */
#include <util/delay.h> /* Functions to waste time */
#include "lcd_lib.h" /* LCD Library */

int main(void) {
 // -------- Inits --------- //
 initialize_LCD(); /* Initialize LCD */

 LcdDataWrite('A'); /* Print a few characters for test */
 LcdDataWrite('B');
 LcdDataWrite(‘C');

 // ------ Event loop ------ //
 while (1) {
 /* Nothing to do */
 } /* End event loop */
 return (0);
}

9/5/2017

4

Task 1: Extending the Debounce State Machine &
LED Frequency Toggling

 Extend the 3-State Debounce State Machine such that the transition from the
state Pushed  Maybe  Pushed is not considered a new button push
 This eliminates the possible errors of the 3-State Debounce State Machine

 Use this extended debounce state machine to toggle the LED blinking
frequency (Lab2b: Task1) using the switch
 Each button push should toggle the LED blinking frequency between 2Hz and 8Hz. (So, no

matter the duration of the button push, a single button push should toggle the frequency
only once.)

 Also print the frequency of the current mode on LCD

 Don’t forget you can use the debugging techniques we learned last week to fix your buggy
code.

7

Task 2: Non-Blocking UART Reads
 Modify the LED frequency switching task (Lab2b: Task3) such that the UART reads

are non-blocking. In other words, the LED should keep blinking when the user is
asked if he wants to change the LED frequency.
 Use UART interrupt service routine to receive the characters in a buffer (as shown in the lecture)

 Implement Task_InterpretReadBuffer() function to:
 Properly handle the frequency switching

 Display the current frequency on LCD

8

9/5/2017

1

ECE3411 – Fall 2017

Marten van Dijk
Department of Electrical & Computer Engineering

University of Connecticut
Email: marten.van_dijk@uconn.edu

ISRs, Timer0
Task Based Programming

Lecture 2b.

Based on the Atmega328P datasheet and material
from Bruce Land’s video lectures at Cornel

Copied from Lecture 3a, ECE3411 – Fall 2015, by
Marten van Dijk and Syed Kamran Haider

Timer 0

2

9/5/2017

2

Timer 0

3

Divider
/1
/8
/64
Etc.

Clocked: Scaled
internal clock or
external clock

Mux

TCCR0B[CS02:CS00] selects the prescalar (1, 8, 64, etc.)

Clocked
off Mux

T0 pin
Port pin PD4

Channel A

TCNT0

HW Comparator “=“

HW Comparator “=“

OCR0A

OCR0B

Channel B

Bus

8

8

8

Channels A and B
� TCNT0 and OCR0A are compared in HW, on equality:

� Can clear TCNT0

� Set interrupt flag (forces a HW event leading to possibly have the interrupt unit make the PC jump to
the corresponding ISR)

� Toggle an I/O line (Channel A), etc.

� TCNT0 and OCR0B are compared in HW, on equality as above
� Except clearing TCNT0 is not an option

� Channels A and B can be used for PWM (discussed in a couple of weeks)

4

9/5/2017

3

TCCR0A, TCCR0B

5

WGM00, WGM01, WGM02 � Waveform generation mode

CS00, CS01, CS02 � Controls the rate of the Mux

TCCR0A, TCCR0B

6

Waveform Generation Mode sets autoclear on matching OCR0A if TCCR0A |= (1<<WGM01);
• TCNT0 increments to OCR0A, is reset back to 0, and starts incrementing again
• TCNT0 follows a sawtooth

Every increment of TCNT0 is clocked using F_CPU/prescaler
• E.g., for F_CPU = 1MHz, then after TCCR0B = 2; each TCNT0 increment takes 8/(1MHz) = 8 micro seconds
• For OCR0A = 124, TCNT0 transitions from 0�1, 1�2, …, 123�124, 124�0, each transition taking 8

micro second giving one full period of 125*8 micro seconds, i.e., 1ms

Enabling an ISR every period can be used to create a precise 1ms clock!

9/5/2017

4

Building a SW 1ms clock from HW Timer 0

� TOIE0: timer 0 overflow interrupt enable

� OCIE0A: timer 0 output compare interrupt enable A
� Set TIMSK0 = 2;

� Program ISR(TIMER0_COMPA_vect) { SWTaskTimer++;}

� Initialize global variable volatile int SWTaskTimer=0;

� Now SWTaskTimer is a reliable clock which increments every 1ms !
� Suppose your task is to toggle a LED every 1/2 seconds (a 1Hz signal), then you can add in your

main while loop the instruction if (SWTaskTimer == 500) { LEDToggle(); SWTaskTimer == 0;}

� This avoids using the blocking delay functionality and allows other tasks to execute while waiting for
the next moment at which the MCU should toggle the LED again 7

Putting It Together: Task Based Programming

8

….
int TaskTime = 500;
volatile int SWTaskTimer=TaskTime;

ISR(TIMER0_COMPA_vect)
{
if (SWTaskTimer>0) {SWTaskTimer--;}
}

// 1ms ISR for Timer 0 assuming F_CPU = 1MHz
void InitTimer0(void)
{

TCCR0A |= (1<<WGM01);
OCR0A = 124;
TIMSK0 =2;
TCCR0B = 2; //Timer starts
}
….

int main(void)
{

…
InitTimer0();
…
sei(); // Enable global interrupt

while(1)
{
if (SWTaskTimer == 0)
{

Task();
SWTaskTimer == TaskTime;

}
}

return 0;
}

9/5/2017

5

Using Prescalars
� E.g., can we use prescaler = 1 for a 1ms clock?

� Each TCNT0 increment takes 1/(1MHz) = 1 micro seconds

� 1ms = 1000 TCNT0 increments � OCR0A must be equal to 1000-1=999

� Does not fit an 8-bit register/character!

� E.g., can we use prescalar 64 instead?

� Each TCNT0 increment takes 64/(1MHz) = 64 micro seconds

� 1ms = 1ms / 64 us = 1000/64 = 15.625 TCNT0 increments

� OCR0A is an integer: it must be either 14 or 15, giving a 15*64 um = 0.96ms
period or a16*64 um = 1.024ms period

� SW clock is off by 2.4% (OCR0A=15 yields the least noise)

9

Performance Overhead Caused by ISR
� Current setting TCNT0 increments every 8um (prescalar set to 8) and ISR is triggered every

125 increments/ticks (our 1ms clock implementation)

� ISR takes 120 cycles = 120/1MHz = 120um = 120/8 ticks = 15 ticks � within one full
period of 125 ticks, 15 are used up for the ISR, 15/125 = 12% of the time (lots of
overhead)

� Can we do better?
� Do we need a 1ms SW counter or does our application allows something larger? E.g., if TaskTime = 500

ms then we can use a 0.5s SW counter! How do you now initialize Timer0 and what performance overhead
does this cost?

� Use higher clock speed: Can we scale the internal clock up to 8MHz? Or do we use an external clock of
say 16MHz? What do we have?

� Can we do worse? E.g., suppose we initialize Timer0 so that each period takes only 96um;
for 8um TCNT0 ticks, set OCR0A = 15. Since 96<120, the ISR is always busy and
incrementing at 120um (not at 96um):
� There is no real forward progress on the main code: a forced 1 instruction every 120um as if the MCU is

running at 4 cycles/ 120 micro second = 1/30 MHz!

� The software clock is completely off

10

9/5/2017

6

Removing Blocking delay_ms()
� Task Based Programming shows how to remove delay_m() from the main while loop

� What about a procedure/task that uses delay_ms()?

� Suppose you create code which writes a 16 character string on each line: this takes
32 LCD_GoTO commands and 32 LCDDataWrites, each taking 4ms due to
delay_ms(1) delays � Takes 250ms

� During these 250ms nothing else happens, in particular, if you have a software
routine that adapts a PWM signal using the hardware timers, then this routine is
interrupted for 250ms.

� This means that the PWM signal remains unchanged for this period. If the LCD string
writes are programmed to happen every 1s you will hear clicks/glitches every 1s.

� Even if you write just 1 character every say 40ms, this will introduce a new
frequency of 25Hz (1000/40) to the spectrum of your PWM signal, which is in your
hearing range.

11

Removing Blocking delay_ms()

12

void TaskAB(inputAB)
{

CodeA;
delay_ms(WaitTime);
CodeB;

}

int main(void)
{ …
while(1)
{
if (CondAB)
{

TaskAB(InpAB);
ResetCondAB;
}

}
…
}

void TaskA(InpAB)
{

CodeA;
InputB = CaptureCurrentStateCodeA;

}

ISR(TIMER0_COMPA_vect)
{
if (TimerABWaiting>0 &&WaitingFor==B)
{ TimerABWaiting--; }
}

void TaskB(InpB)
{

RecoverStateEndOfCodeA(InpB);
CodeB;

}

int main(void)
{ …
while(1)
{
if (CondAB &&WaitingFor==A)
{

TaskA(InpAB);
WaitingFor = B;
TimerABWaiting ==WaitTime;

}
if (WaitingFor==B && TimerABWaiting==0)
{

TaskB(InpB);
WaitingFor = A;
ResetCondAB;
}

}
…
}

Serves as
“Busy Signal” and

“FSM state”

Without
WaitingFor

Multiple threads
may start to

interfere

9/5/2017

7

Multiple Threads
� CodeA executes on InpAB and at the end captures it state in InpB

� While waiting for starting execution of CodeB (and resume from state InpB), which
takes WaitTime ms, the main while loop starts to execute CodeA again …

� Ouch: a new end state of CodeA is captured in InpB and overwrites the old one!

� The first call to “TaskAB” will never finish to completion and is essentially discarded.

� We need to remember a priority queue of states InpB for each call to “TaskAB” in
the main while loop � needs a pointer structure
� Ouch, what happens if the task consists of multiple code portions separated by delay_ms() commands

� What if the delay_ms() command is in a while loop or for loop …

� What if a task calls another task that has a delay_ms() operation …

� We need a smart queue which remembers all the states (like InpB) of all the procedures the main
while loop is waiting for; in addition it needs to remember what needs to execute in-order (according
to a priorty queue) and what can be executed in parallel ..

� Need an operating system (OS), a tiny one as we have limited storage in the MCU

13

9/5/2017

1

ECE3411 – Fall 2017

Marten van Dijk
Department of Electrical & Computer Engineering

University of Connecticut
Email: marten.van_dijk@uconn.edu

Non-Blocking LCD (using Timer ISR)

Lab2b

Copied from Lab 3b, ECE3411 – Fall 2015, by
Marten van Dijk and Syed Kamran Haider

LCD functions so far!
� So far the LCD functions are blocking…

� These functions use _delay_ms() or _delay_us() routines.

� We need to make use of the wasted CPU cycles
� Hence we need to get rid of _delay_ms() & _delay_us() routines

� We use timer interrupts to trigger an event once certain time period has elapsed
� Meanwhile do other work instead of waiting idle for the time to pass.

2

9/5/2017

2

LCD Blocking Command Write Example

3

void LcdCommandWrite(uint8_t cm)
{

// First send higher 4-bits
DATA_PORT = (DATA_PORT & 0xf0) | (cm >> 4);
CTRL_PORT &= ~(1<<RS);
CTRL_PORT |= (1<<ENABLE);
_delay_ms(1); // WASTED CYCLES
CTRL_PORT &= ~(1<<ENABLE);
_delay_ms(1); // WASTED CYCLES

// Send lower 4-bits
DATA_PORT = (DATA_PORT & 0xf0) | (cm & 0x0f);
CTRL_PORT &= ~(1<<RS);
CTRL_PORT |= (1<<ENABLE);
_delay_ms(1); // WASTED CYCLES
CTRL_PORT &= ~(1<<ENABLE);
_delay_ms(1); // WASTED CYCLES

}

LCD Blocking Data Write Example

4

void LcdDataWrite(uint8_t da)
{

// First send higher 4-bits
DATA_PORT = (DATA_PORT & 0xf0) | (da >> 4);
CTRL_PORT |= (1<<RS);
CTRL_PORT |= (1<<ENABLE);
_delay_ms(1); // WASTED CYCLES
CTRL_PORT &= ~(1<<ENABLE);
_delay_ms(1); // WASTED CYCLES

// Send lower 4-bits
DATA_PORT = (DATA_PORT & 0xf0) | (da & 0x0f);
CTRL_PORT |= (1<<RS);
CTRL_PORT |= (1<<ENABLE);
_delay_ms(1); // WASTED CYCLES
CTRL_PORT &= ~(1<<ENABLE);
_delay_ms(1); // WASTED CYCLES

}

9/5/2017

3

Task 1: Debounce State Machine with Timer ISR

� Implement the LED Frequency Toggling task from Lab3a:Task1 using the
Timer Interrupts, i.e.
� Use the Extended Debounce State Machine to read a Push Switch.

� On a button push, toggle the LED blinking rate between 2Hz & 8Hz.

� You don’t need to print anything on LCD or UART.

� You are NOT ALLOWED to use _delay_ms() or _delay_us() functions.

5

Task2: Non-Blocking LCD Writes

Implement Non-Blocking LCD Writes using the Timer Interrupts and demonstrate
LCD refresh rate of exactly 1Hz.

� In particular, implement the following:
� Non-Blocking LcdDataWrite(uint8_t data) and LcdCommandWrite(uint8_t command) functions.

� Print a different character on LCD after exactly 1 second to show a refresh rate of 1Hz, e.g.
first print ‘0’ then ‘1’ after a second, and so on.

� You are NOT ALLOWED to use _delay_ms() or _delay_us() functions.

6

9/5/2017

1

ECE3411 – Fall 2017

Marten van Dijk
Department of Electrical & Computer Engineering

University of Connecticut
Email: marten.van_dijk@uconn.edu

Timers 0, 1 & 2

Lecture 2c.

Based on the Atmega328P datasheet and material
from Bruce Land’s video lectures at Cornel

Copied from Lecture 3b, ECE3411 – Fall 2015, by
Marten van Dijk and Syed Kamran Haider

Timer 0 (Same as Timer 2)

2

9/5/2017

2

Timer 0

3

Divider
/1
/8
/64
Etc.

Clocked: Scaled
internal clock or
external clock

Mux

TCCR0B[CS02:CS00] selects the prescalar (1, 8, 64, etc.)

Clocked
off Mux

T0 pin
Port pin PD4

Channel A

TCNT0

HW Comparator “=“

HW Comparator “=“

OCR0A

OCR0B

Channel B

Bus

8

8

8

Putting It Together: Task Based Programming

4

….
int TaskTime = 500;
volatile int SWTaskTimer=TaskTime;

ISR(TIMER0_COMPA_vect)
{
if (SWTaskTimer>0) {SWTaskTimer--;}
}

// 1ms ISR for Timer 0 assuming F_CPU = 1MHz
void InitTimer0(void)
{

TCCR0A |= (1<<WGM01); //Clear on Compare A
OCR0A = 124; //Set number of ticks for Compare A
TIMSK0 =2; //Enable Timer 0 Compare A ISR
TCCR0B = 2; //Set Prescalar & Timer 0 starts
}
….

int main(void)
{

…
InitTimer0();
…
sei(); // Enable global interrupt

while(1)
{
if (SWTaskTimer == 0)
{

Task();
SWTaskTimer == TaskTime;

}
}

return 0;
}

9/5/2017

3

Example Timer 0
� 16MHz, 1ms ticks:

5

// 1ms ISR for Timer 0 assuming F_CPU = 16MHz
void InitTimer0(void)
{

TCCR0A |= (1<<WGM01); //turn on clear-on-match with OCR0A
OCR0A = 249; //Set the compare register to 250 ticks
TIMSK0 = (1<<OCIE0A); //Enable Timer 0 Compare A ISR
TCCR0B = 3; // Set Prescalar to divide by 64 & Timer 0 starts
}
….

Timer 2

6

Clocked
off Mux

Channel A

TCNT2

HW Comparator “=“

HW Comparator “=“

OCR2A

OCR2B

Channel B

Bus

8

8

8

OC2A = PB3

OC2B = PD3

Create an autonomous 200 cycle long square
wave at PB3:
• OCR2A = 99 sets a 100 cycle half period
• TCCR2B = 1 sets prescalar at 1, i.e.,

counting is done at full rate (F_CPU)
• TCCR2A= (1<<COM2A0) |

(1<<WGM21);
• See Timer 0 discussion: (1<<WGM2)

gives us a clear on match
• (1<<COM2A0) is new: it tells the

MCU to use channel A, i.e., it
connects the comparator to the
output pin OC2A=PB3

• DDRB = (1<<PINB3) sets PB3 as output

9/5/2017

4

Example Timer 2
� 200 cycle square waveform at PB3 (a first example of PWM):

7

void InitTimer2(void)
{

TCCR2A |= (1<<COM2A0) | (1<<WGM21); //turn on clear-on-match with OCR0A
// transmit comparator result to pin OC2A

OCR2A = 99; //Set the compare register to 100 ticks, i.e., one half period
TCCR2B = 1; // Set Prescalar to divide by 1, i.e., full speed
DDRB = (1<<PINB3); //Set OC2A = PB3 to output
}
….

Timer 1

8

PB1

PB2

PB0

(See pin assignments)

9/5/2017

5

Timer 1

9

Clocked
off Mux

Channel A

TCNT1

HW Comparator “=“

HW Comparator “=“

OCR1A

OCR1B

Channel B

Bus

8

8

8

16

16

16

16

OC1A = PB1

OC1B = PB2

TCNT1 is 16 bits, a high and low
register:
• Need 2 bus cycles to read TCNT1:

it reads the lower byte and also
copies the higher byte to a special
location

• Stores the 8-bit high till you read it,
if you do not read it, you will never
read a value again

• If you read the high value first and
then the low value, timer 1 is frozen

• Use the 16 bit reads built into C

Not drawn: TCNT1 can be captured by
register ICR1 clocked of a mux …. see
next slide

TCNT1 Can Be Captured by ICR1

10
PB0

Edge change indicates when to capture.
• Caused by an edge change on PB0 (if set to input)
• Or by an edge change on Analog Comparator
Select bit ACIC in ACSR register indicates which of the
two is chosen

9/5/2017

6

Register Description Timer 1
� Control register TCCR1A:

� Positions 7&6 � COM1A (COM1A0 and COM1A1)

� Positions 5&4 � COM1B (COM1B0 and COM1B1)

� Positions 1&0 � WGM11 and WGM10 (waveform)

� Control register TCCR1B:
� Positions 3&4 � WGM13 and WGM12 (waveform continued)

� Positions 0,1,2 � Prescalar as before

� Position ICES1=6 � Sets input capture edge select:
� 1 = rising

� 0 = falling

� Position ICNC1=7 � Sets input capture noise canceler
� This requires 2 measurements in a row making sure one transmission actually occurred

� Control register TIMSK1:
� Positions 0,1,2 � As before
� TOIE1 (timer overflow interrupt enable)

� OCIE1A and OCIE1B (on compare and match interrupt enable)

� Positions ICIE1=5 � Interrupt capture interrupt enable

11

Analog Comparator Output

12

Select bandgap
reference

Let’s connect the
Timer 2 square
waveform (PB3)

PD7

PD7 vs Bandgap
Want to capture at rising

edge ICES1set to 1;
Since PB3 generates a

waveform on a cycle by
cycle basis, prescalar set

to 1 for full speed

9/5/2017

7

PIN Assignment

13

Register Description Timer 1

� Let’s program a capture interrupt using the analog comparator

� Need to set register ACSR:
� Positions 0&1 � Interrupt on toggle rise or fall

� Positions 2&3 � Capture and Comparator interrupt enable

� We want to enable the capture interrupt (not the comparator interrupt)

� Position 4 � Comparator interrupt flag:

� Is set when this interrupt happens, and

� clears when a corresponding ISR executes the final (atomic) RETI instruction

� Position 5 � Records ACO raw comparator output:

� in real time nanosec by nanosec

� digital output of the analog comparator (signal ACO)

� Position 6 � Connects positive input to a bandgap reference (a temperature independent voltage
reference circuit)

� If 1, then (see description datasheet) fixed bandgap reference is used as input to the analog comparator (usually do not want this)

� Position 7 � When switched to 1 the analog comparator is turned off 14

9/5/2017

8

Example Timer 1

15

void InitTimer1(void)
{

//Set up timer1 for full speed and capture an edge on analog comparator pin D.7

//Set capture to positive edge; Full counting rate (prescalar set to 1)
TCCR1B = (1<<ICES1) + 1;

// Turn on timer1 interrupt-on-capture
TIMSK1 = (1<<ICIE1) ;

// Set analog comp to connect to timer capture input and turn on the band gap reference on the positive input
ACSR = (1<<ACBG) | (1<<ACIC) ;
// Comparator negative input is AIN1= D.7
DDRD = 0 ;

}
….

Full Picture Timers
� 3 initialization codes for Timer 0, 1, 2; Timer 0 implements a 1ms software counter

� Timer 2 (at full speed) generates a square waveform, period 200 cycles

� Waveform drives ACO

� Rising edges ACO causes capture interrupts for Timer 1(at full speed)

� Both timers run at full speed and should be synchronized:

16

ISR (TIMER1_CAPT_vect)
{

// read timer1 input capture register
T1capture = ICR1 ;
// compute time between captures
period = T1capture - lastT1capture;
lastT1capture = T1capture ;

}

ISR (TIMER0_COMPA_vect)
{

//Decrement the time if not already zero
if (time1>0) --time1;
}

9/5/2017

9

Full Picture Timers

17

int main(void)
{
initialize();
while(1)
{

// task1 prints the period
if (time1==0){time1=t1; task1();}

// poll for ACO 0->1 transition (ACSR.5)
// as fast as possible and record Timer1
ACObit = ACSR & (1<<ACO) ;
if ((ACObit!=0) && (lastACObit==0))
{

T1poll = TCNT1 ;
periodPoll = T1poll - lastT1poll;
lastT1poll = T1poll ;

}
lastACObit = ACObit ;
}
}

Print the polled period from ACSR.5 which records AC0
Print the polled captured period from ICR1 (done in capture ISR)

What is the difference?
Measurement from polled period is off by 10% � Next lab

Connect PD3 and PB7 !

Lab2b & Lab2c
� We will remove delay_ms() from the LCD goto and write data commands

� The assumption is that the task that calls these commands
� is issued every x ms with x much larger than

� the combined waiting time over all delay_ms in the LCD commands within the task.

� This implies that this task will not be called while LCD commands are being
executed, hence, no multi-threading and our simple solution (without priority queues
etc.) should work

� By making the LCD commands non-blocking, other tasks in the main while loop
continue without interruption! In a future lab we plan to demonstrate this.

18

9/5/2017

1

ECE3411 – Fall 2017

Marten van Dijk
Department of Electrical & Computer Engineering

University of Connecticut
Email: marten.van_dijk@uconn.edu

Non-Blocking LCD (Extended State Machine)

Lab 2c.

Copied from Lab 3c, ECE3411 – Fall 2015, by
Marten van Dijk and Syed Kamran Haider

LCD Blocking Data Write Example

2

void LcdDataWrite(uint8_t da)
{
 // First send higher 4-bits
 DATA_PORT = (DATA_PORT & 0xf0) | (da >> 4);
 CTRL_PORT |= (1<<RS);
 CTRL_PORT |= (1<<ENABLE);
 _delay_ms(1); // WASTED CYCLES
 CTRL_PORT &= ~(1<<ENABLE);
 _delay_ms(1); // WASTED CYCLES

 // Send lower 4-bits
 DATA_PORT = (DATA_PORT & 0xf0) | (da & 0x0f);
 CTRL_PORT |= (1<<RS);
 CTRL_PORT |= (1<<ENABLE);
 _delay_ms(1); // WASTED CYCLES
 CTRL_PORT &= ~(1<<ENABLE);
 _delay_ms(1); // WASTED CYCLES
}

9/5/2017

2

LCD Non-Blocking Write
In last lab, we implemented the following
state machine:

 Split the Blocking-write into 4 states
 Upper Nibble Setup State (UNSS)

 Upper Nibble Hold State (UNHS)

 Lower Nibble Setup State (LNSS)

 Lower Nibble Hold State (LNHS)

 Transition to next state upon timer
interrupt
 Meanwhile do something else.

3

UNSS UHSS

LNSSLNHS

DONE

!WriteData
Timer

Interrupt

Timer
Interrupt

Timer
Interrupt

Timer
Interrupt

Task 1: Non-Blocking LCD Command+Data Write

Implement Non-Blocking LCD Writes using the Timer Interrupts and demonstrate
LCD refresh rate of exactly 1Hz.

In particular, implement the following:

 Implement a non-blocking LCD_GoTo_and_Write(int x, int y, char data) function that writes
a LCD GoTo command and a data to the resulting location back to back in a truly non-
blocking fashion.
 Implement a large state machine that can handle two back to back LCD write operations.

 Print a different character on LCD after exactly 1 second to show a refresh rate
of 1Hz, e.g. first print ‘0’ then ‘1’ after a second, and so on.

 You are NOT ALLOWED to use _delay_ms() or _delay_us() functions.

4

9/5/2017

3

Extended LCD Write State Machine

5

UNSS UHSS

LNSSLNHS

DONE

LCD_got_new_req == 0

Timer
Interrupt

Timer
Interrupt

Timer
Interrupt

Timer
Interrupt

Always LNHSLNSS

Timer
Interrupt

Timer
Interrupt

UNSSUNHS
Timer

Interrupt
Timer

Interrupt

Command Write

Data Write

Department of Electrical and Computing Engineering

UNIVERSITY OF CONNECTICUT

ECE 3411 Microprocessor Application Lab: Fall 2017

Problem Set P2
There are 4 questions in this problem set. Answer each question according to the instructions
given in at least 3 sentences on own words.

If you find a question ambiguous, be sure to write down any assumptions you make.
Be neat and legible. If we can’t understand your answer, we can’t give you credit!

Any form of communication with other students is considered cheating and will merit an F as final
grade in the course.

SUBMIT YOUR ANSWERS IN A HARDCOPY FORMAT

Do not write in the box below

1 (x/35) 2 (x/40) 3 (x/15) 4 (x/10) Total (xx/100)

Name:

Student ID:

ECE 3411 Fall 2017, Problem Set P2 Page 2 of 9

1. [35 points]: Answer the following questions related to ISR:

a. Once an interrupt occurs, how does an AVR know where to find the code for the corresponding
Interrupt Service Routine(ISR)?

b. Is the following statement True or False? ”Upon an interrupt, the instruction which is currently
being executed in the main code is finished first before executing the Interrupt Service Routine.”

c. The following code shows a typical polling based system.

int main(void){

// Event Loop

while(1){

if (Button1_Pressed())

{

Task_1();

if (Button2_Pressed()) Task_2();

}

}

}

Which statement is correct about this system?

(a) Task 1() has higher priority than Task 2().
(b) Task 2() has higher priority than Task 1().
(c) Both Task 1() and Task 2() have the same priority.
(d) None of the above

Hint: Task 1() is said to have higher priority than Task 2() if, while in the middle of executing
Task 2(), the AVR is ready to stop executing Task 2() and execute Task 1() immediately if it
needs to react to a change coming in from the outside world.

Initials:

ECE 3411 Fall 2017, Problem Set P2 Page 3 of 9

d. Which one of the following systems may potentially waste and/or inefficiently utilize the
useful CPU cycles?

(a) Interrupt Based System
(b) Polling Based System
(c) Both (a) and (b)
(d) None of the above

e. What is the return value of ISR() function?

f. Can a user defined variable be passed to an ISR()? If not, how can a variable be made
accessible inside an ISR()?

g. Suppose that you do not press the on-board button, which generates a logic HIGH at PORTB7.
What is the value of variable “a”?

#define PINB7 7

uint8_t a;

a = PINB7;

Initials:

ECE 3411 Fall 2017, Problem Set P2 Page 4 of 9

2. [40 points]:Answer the following questions related to Timers:

a. In ‘Normal Mode’, when does the 8-bit Timer/Counter Timer0 overflow?

(a) When TCNT0 matches with OCR0A
(b) When TCNT0 matches with OCR0B
(c) When TCNT0 = 255
(d) None of the above

b. In ‘Clear Timer on Compare Match’ (CTC) mode, Timer0 resets itself automatically when it
reaches the value that is stored in the register:

(a) OCR0A
(b) TCCR0A
(c) TIMSK0
(d) None of the above

c. Assume an MCU with crystal clock frequency 16MHz with Timer0 initialized as follows:

/* Normal mode (default), just counting */

TCCR0B |= 0x01; /* Clock Pre-scaler @ 1 */

At what rate, the register TCNT0 is incremented?

d. For Timer 0, which register actually serves as a counter and stores the ticks-count?

(a) TCNT0
(b) OCR0A
(c) OCR0B
(d) None of the above

e. For Timer 0 running in ‘Clear Timer on Compare Match’ (CTC) mode, the values of which
two registers are compared with each other to determine a ‘Compare Match’?

(a) OCR0B and TCCR0A
(b) OCR0A and TCNT0
(c) TIMSK0 and TCNT0
(d) None of the above

f. Assume an MCU with crystal clock frequency 16MHz with Timer0 initialized as follows:

Initials:

ECE 3411 Fall 2017, Problem Set P2 Page 5 of 9

TIMSK0 = 2; // Enable Timer0 Compare Match interrupt

TCCR0A = 0x02; // Clear Timer on Compare Match (CTC) mode

TCCR0B = 0x03; // Prescalar @ 64 hence Timer0 increments every 4 microseconds

OCR0A = X; // Value that controls the rate of ‘Compare Match’ interrupt

Calculate the value of X that should be loaded into OCR0A register in order to generate the Compare
Match interrupt after every 1ms.

X =

g. Which timer register chooses the type of timer-based interrupt vector?

(a) TCCRnA
(b) TCCRnB
(c) TIMSK
(d) OCRnA/OCRnB

Initials:

ECE 3411 Fall 2017, Problem Set P2 Page 6 of 9

h. The figure below shows Input Capture Unit block diagram for Timer 1.

Figure 1: Input Capture Unit Block Diagram.

List the two sources (shown in the block diagram) that can be configured to generate an “Input
Capture Interrupt”.

Initials:

ECE 3411 Fall 2017, Problem Set P2 Page 7 of 9

3. [15 points]: The figure below shows the state diagram of a simple Finite State Machine (FSM).
The FSM has four states and an input called Flag. Complete the switch statement given below to
implement these state transitions.

State_A State_B

State_C State_D

Flag = 0

Flag = 1

Flag = 0 Flag = 1

Flag = 1

Flag = 0

Figure 2: A Finite State Machine.

/* FSM Implementation */

switch (StopWatch_State)

{

case State_A:

break;

case State_B:

break;

case State_C:

break;

case State_D:

break;

}

Initials:

ECE 3411 Fall 2017, Problem Set P2 Page 8 of 9

4. [10 points]: Can you shortly describe what you have learned and feel confident about using in the
future?

Initials:

ECE 3411 Fall 2017, Problem Set P2 Page 9 of 9

End of Problem Set
Please double check that you wrote your name on the front of the quiz.

Initials:

Department of Electrical and Computing Engineering

UNIVERSITY OF CONNECTICUT

ECE 3411 Microprocessor Application Lab: Fall 2017

Problem Set A2
There are 4 questions in this problem set. Answer each question according to the instructions
given in at least 3 sentences on own words.

If you find a question ambiguous, be sure to write down any assumptions you make.
Be neat and legible. If we can’t understand your answer, we can’t give you credit!

Any form of communication with other students is considered cheating and will merit an F as final
grade in the course.

SUBMIT YOUR ANSWERS IN A HARDCOPY FORMAT.

Do not write in the box below

1 (x/20) 2 (x/30) 3 (x/30) 4 (x/20) Total (xx/100)

Name:

Student ID:

ECE 3411 Fall 2017, Problem Set A2 Page 2 of 7

1. [20 points]: Let Task1() and Task2() be two functions from standard C library (stdlib.h).
Write a C program for your AVR such that it calls Task1() every 10ms and Task2() every 100ms.
Use of delay ms() functionality is allowed in this question. Assume that the execution of Task1()
and Task2() virtually takes no time.

#define F_CPU 16000000UL

#include <avr/io.h>

#include <stdio.h>

#include <stdlib.h>

#include <util/delay.h>

/* Declare any variables here */

int main(void)

{

/* Write your code below */

} /* End of main() */

Initials:

ECE 3411 Fall 2017, Problem Set A2 Page 3 of 7

2. [30 points]: The code given below uses Timer 1 ‘Compare Match A’ ISR to blink a LED connected
to PB5. If the clock frequency (clkI/O) is 16MHz, complete the “initialize all()” function below
such that the LED toggles after every 250 milliseconds.

/* Initialization function */

void initialize_all(void)

{

// Set the LED pin as Output here

// Configure Timer 1 here.

// Enable Global Interrupts here.

} /* End of initialize_all() */

//---

/* Timer 1 Compare Match ISR */

ISR (TIMER1_COMPA_vect)

{

PORTB ˆ= (1<<PORTB5); // Toggle the LED

}

//---

/* Main Function */

int main(void)

{

// Initialize everything

initialize_all();

while(1); /* Nothing to do */

} /* End of main() */

//---

Initials:

ECE 3411 Fall 2017, Problem Set A2 Page 4 of 7

3. [30 points]: You want to toggle a LED connected to PB5 after every 250 milliseconds. One way
to do it is by using Timer 1 ‘Overflow’ ISR and a software counter. If the clock frequency (clkI/O) is
16MHz, complete the “initialize all()” function and “ISR(TIMER1 OVF vect)” below such that
the error in LED toggling period is less than 1 millisecond.
Hint: Running the Timer on higher frequencies provides more accurate results.
Hint: Overflow occurs when the counter reaches its maximum 16-bit value (MAX = 0xFFFF).

/* Global variable declarations */

volatile uint8_t software_counter;

volatile uint8_t counter_reset_value;

/* Initialization function */

void initialize_all(void)

{

// Set the LED pin as Output here

// Configure Timer 1 here.

// Initialize ‘counter_reset_value’ with appropriate value here.

// Initializing ‘software_counter’

software_counter = counter_reset_value;

// Enable Global Interrupts here.

} /* End of initialize_all() */

//---

Initials:

ECE 3411 Fall 2017, Problem Set A2 Page 5 of 7

/* Timer 1 Overflow ISR */

ISR(TIMER1_OVF_vect)

{

/* Your code for ISR goes here */

}

//---

/* Main Function */

int main(void)

{

// Initialize everything

initialize_all();

while(1)

{

if(software_counter == 0)

{

PORTB ˆ= (1<<PORTB5); // Toggle the LED

software_counter = counter_reset_value;

}

}

} /* End of main() */

//---

Initials:

ECE 3411 Fall 2017, Problem Set A2 Page 6 of 7

4. [20 points]: The ISR given below triggers periodically every 1ms and implements a simple Finite
State Machine (FSM).

// Timer 0 Compare Match ISR

ISR (TIMER0_COMPA_vect)

{

/* FSM Implementation */

switch (Current_State)

{

case State_A:

if(Flag == 0) Current_State = State_B;

else Current_State = State_D;

break;

case State_B:

if(Flag != 0) Current_State = State_A;

break;

case State_C:

Current_State = State_A;

break;

case State_D:

if(Flag != 0) Current_State = State_C;

break;

}

}

(a) Draw the state transition diagram of this FSM.

Initials:

ECE 3411 Fall 2017, Problem Set A2 Page 7 of 7

(b) Fill in the state transition table given below for this FSM.

Table 1: FSM State Transition Table

Time (ms) Flag Current State

0 0 State B

1 0
2 1
3 1
4 0
5 1
6 0
7 0

End of Problem Set
Please double check that you wrote your name on the front of the quiz.

Initials:

