
9/10/2017

1

ECE3411 – Fall 2017

Marten van Dijk
Department of Electrical & Computer Engineering

University of Connecticut
Email: marten.van_dijk@uconn.edu

Introduction to Microcontrollers
General Purpose Digital Output

Lec1a.

Copied from Lecture 1b, ECE3411 – Fall 2015,
by Marten van Dijk and Syed Kamran Haider

A Personal Computer

2

Slide from Sung Yeul Park

9/10/2017

2

A Microcontroller
 A Microcontroller contains a processor core, memory and other peripherals on a

single chip.

3
Slide from Sung Yeul Park

Microcontroller Structure

4
Slide from Sung Yeul Park

9/10/2017

3

Atmega328P Xplained Mini Kit
 The ATmega328P Xplained Mini evaluation board

provides a development platform for the Atmel
ATmega328P Microcontroller.

 Target Microcontroller: ATmega328P

 On-board Programming & Debugging capability
using Atmel Studio
 Programmer Microcontroller: ATmega32U4

 USB connectivity

 Headers & Connectors for accessing target
microcontroller’s I/O pins

5

ATmega328P

ATmega32U4

ATmega328P Features (1)
 High Performance, Low Power Atmel®AVR® 8-Bit Microcontroller

 Advanced RISC Architecture
 131 Powerful Instructions – Most Single Clock Cycle Execution
 32 x 8 General Purpose Working Registers
 Fully Static Operation
 Up to 20 MIPS Throughput at 20MHz
 On-chip 2-cycle Multiplier

 High Endurance Non-volatile Memory Segments
 32KBytes of In-System Self-Programmable Flash program memory
 1K Byte EEPROM
 2K Bytes Internal SRAM
 Write/Erase Cycles: 10,000 Flash/100,000 EEPROM
 Data retention: 20 years at 85°C/100 years at 25°C
 Optional Boot Code Section with Independent Lock Bits

 In-System Programming by On-chip Boot Program
 True Read-While-Write Operation

 Programming Lock for Software Security

6

9/10/2017

4

ATmega328P Features (2)
 Peripheral Features

 Two 8-bit Timer/Counters with Separate Prescaler and Compare Mode

 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture Mode

 Real Time Counter with Separate Oscillator

 Six PWM Channels

 8-channel 10-bit ADC with Temperature Measurement

 Programmable Serial USART

 Master/Slave SPI Serial Interface

 Byte-oriented 2-wire Serial Interface (Phillips I2C compatible)

 Programmable Watchdog Timer with Separate On-chip Oscillator

 On-chip Analog Comparator

 Interrupt and Wake-up on Pin Change

7

ATmega328P Features (3)
 Special Microcontroller Features

 Power-on Reset and Programmable Brown-out Detection
 Internal Calibrated Oscillator
 External and Internal Interrupt Sources
 Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby, and Extended Standby
 Unique Device ID

 I/O and Packages
 23 Programmable I/O Lines
 28-pin PDIP, 32-lead TQFP, 28-pad QFN/MLF and 32-pad QFN/MLF

 Operating Voltage: 1.8 - 5.5V

 Temperature Range: -40°C to 85°C

 Speed Grade: 0 - 20MHz @ 1.8 - 5.5V

 Power Consumption at 1MHz, 1.8V, 25°C
 Active Mode: 0.2mA
 Power-down Mode: 0.1μA
 Power-save Mode: 0.75μA (Including 32kHz RTC)

8

9/10/2017

5

AVR Software Development Process

9

Preprocessor

Compiler

Assembler

Link Editor

Source Code

Executable
Code

Assembly Code

Object CodeLibraries

Programmer

Target
Microcontroller

Atmel
Studio

ATmega328P
Xplained Mini

ATmega328P

10

9/10/2017

6

Register & Port
 Register

 A collection of flip-flops

 Simultaneously loaded (written) in parallel or read

 Interface between users and subsystems

 Viewed as a software configurable switch

11

bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0

An 8-bit wide Register

 Port
 A Port in AVR Microcontrollers represents a bank of pins.

 A port provides an interface between the central processing unit and the internal and external
hardware and software components.

 E.g. PORTB, PORTC, PORTD etc.

Hardware Registers of a Port
Each Port on the Mega AVRs has three hardware registers associated to it:

 DDRx : Data-Direction Register for Port x
 Controls whether each pin is configured for input or output.

 By default, all pins are configured as inputs.

 E.g. to enable a pin as output, a ‘1’ is written to its slot in the DDRx.

 PORTx : Port x Data Register
 When the DDRx bits are set to ‘1’ (output) for a given pin, the PORT register controls whether that pin

is set to logic high or low.

 E.g. writing a ‘1’ to a bit position in PORT register will produce VCC voltage at that pin & vice versa.

 PINx : Port x Input Pins Address
 The PIN register addresses are used to read the digital voltage values for each pin that’s configured

as input.

 E.g. a value ‘0’ of a bit of PIN register indicates a low voltage at that pin & vice versa.

12

9/10/2017

7

Examples of Predefined Registers
 AVR library has some predefined register names for each port.

 E.g. for Port B, the registers are DDRB, PORTB, and PINB

 These registers can be thought of as regular variables
 You can read their values in your code

 You can write values to these registers (except PINx register)

 AVR library also has predefined keywords for each bit position of each port
register
 E.g. for 7th bit position of PINB register, the predefined keyword is PINB7

 Similarly PORTB5 represents 5th bit position of PORTB register

 Notice that the keywords for bit positions are constants
 They simply define the bit number, not the bit value. E.g. PORTB5 = 5

 These keywords are read-only, you cannot write any value to them.

13

Bit Masking Operations
 Bit masking operations allow us to modify a single bit in a register

 Let’s say you want to modify bit 𝑖 in a register called BYTE = 0b01100000

 To Set 𝑖 bit BYTE|= (1 << 𝑖);
 E.g. if 𝑖 = 4 then

BYTE |= (1 << 𝑖) BYTE = 0b01100000 | 0b00010000 = 0b01110000

 To Clear 𝑖 bit BYTE &= ~(1 << 𝑖);
 E.g. if 𝑖 = 6 then

BYTE &= ~(1 << 𝑖) BYTE = 0b01110000 & ~(0b01000000)

BYTE = 0b01110000 & 0b10111111 = 0b00110000

 To Toggle 𝑖 bit BYTE ^= (1 << i);
 E.g. if 𝑖 = 1 then

BYTE |= (1 << 𝑖) BYTE = 0b00110000 ^ 0b00000010 = 0b00110010

14

9/10/2017

8

The Structure of AVR C Code

15

 The preamble is where you include information
from other files, define global variables, and
define functions.

 main() is where the AVR starts executing the
code when the power first goes on.

 Any configurations, e.g. configuring I/O pins
etc., are done in main() before the while(1)
loop.

 while(1) loop represents the core functionality
of the program. It keeps on executing
whatever is in the loop body forever (or as
long as the AVR is powered).

[preamble & includes]
[possibly some function definitions]
int main(void){
 [chip initializations]
 while(1) {
 [do this stuff forever]
 }
 return(0);
}

A Simple Test Program
On Xplained Mini kit,

 LED is connected to 5th pin of
Port B

 Switch is connected to 7th pin of
Port B

(!(EXPRESSION)) means
(EXPRESSION == 0)

 Values for PINB & (1 <<PINB7)
are 0=0b00000000 or
128=0b10000000

16

#include <avr/io.h>
int main(void)
{
 //configure LED pin as output
 DDRB |= 1<<DDRB5;
 while(1){
 /* check the button status (press - 0 , release - 1) */
 if(!(PINB & (1<<PINB7))) {
 /* switch off (0) the LED until key is pressed */
 PORTB &= ~(1<<PORTB5);
 }
 else {
 /* switch on (1) the LED*/
 PORTB |= 1<<PORTB5;
 }
 }
}

9/10/2017

9

The Delay Library
 AVR supports a delay library to introduce delay between the execution of two code

statements.
 <util/delay.h> header file needs to be included in the code

 The delay library provides two functions
 _delay_us(x) for introducing a delay of x microseconds
 _delay_ms(x) for introducing a delay of x milliseconds

 <util/delay.h> library needs to know the Microcontroller’s clock frequency for accurate
time measurements
 Clock frequency is defined by defining F_CPU in the code

 Xplained Mini kit runs the ATmega169PB on 16MHz frequency
 #define F_CPU 16000000UL is included in the code to define the frequency for the delay library

 Only use delay functionality in order to define access functionality for e.g. LCD screen which
requires precise timing sequences:
 Never use delay functionality in your main program
 We want to do other useful computation while waiting

17

Test Program to Blink LED

18

// ------- Preamble -------- //
#define F_CPU 16000000UL /* Tells the Clock Freq to the Compiler. */
#include <avr/io.h> /* Defines pins, ports etc. */
#include <util/delay.h> /* Functions to waste time */
int main(void) {
 // -------- Inits --------- //
 /* Data Direction Register B: writing a one to the bit enables output. */
 DDRB |= (1 << DDRB5);
 // ------ Event loop ------ //
 while (1) {
 PORTB = 0b00100000; /* Turn on the LED bit/pin in PORTB */
 _delay_ms(1000); /* wait for 1 second */
 PORTB = 0b00000000; /* Turn off all B pins, including LED */
 _delay_ms(1000); /* wait for 1 second */
 } /* End event loop */
 return (0); /* This line is never reached */
}

8/30/2017

1

ECE3411 – Fall 2017

Marten van Dijk
Department of Electrical & Computer Engineering

University of Connecticut
Email: marten.van_dijk@uconn.edu

AVR Board Setup
General Purpose Digital Output

Lab1a.

Adopted from Lab 2a slides “AVR Board Setup General Purpose
Digital Output” by Marten van Dijk and Syed Kamran Haider,
Fall 2015.

Development Board Setup
Development Board Setup has three steps

1. Soldering connectors for Xplained Mini kit
2. Soldering connectors for LCD
3. Putting everything together on the breadboard

2

8/30/2017

2

Basics of Soldering
1. Heat the iron to 750F.

2. The LED will stop blinking once the iron
has reached the desired temperature.

3. Heat the pad briefly.

4. With the iron sitting on the pad, push
solder into the tip of the soldering iron.

3

ATmega328P Xplained Mini Pin Allocation

4

PC0-PC3
LCD Data Pins

VIN
5V Input

PD0-PD7
External LEDs

PC4-PC5
LCD Control Pins

PB1
External Switch

8/30/2017

3

Initial board setup
 Setup Atmel studio

 Atmel Studio is available for download at the following
link: http://www.atmel.com/tools/ATMELSTUDIO.aspx

 You need to download "Atmel Studio 6.2 sp2 (build 1563) Installer" which is the first one in the list
of available downloads

 As general guidelines for installation and getting familiar with Atmel Studio, please
follow the Getting_Started_with_ATmega168PB_Application_Note.pdf document
(from page 7 onward) posted under General Resources section.
 Although this document targets ATmega168PB Xplained Mini kit, the exact same steps apply for

ATmega328P Xplained Mini kit.

 Before you start soldering the board make sure the board is working fine.
 Get the test code provided on the next slide working for your board.

5

Test code

6

#include <avr/io.h>
int main(void)
{
//configure LED pin as output
DDRB |= 1<<DDB5;

while(1)
{

/* check the button status (press - 0 , release - 1) */
if(!(PINB & (1<<PINB7))) {

/* switch off (0) the LED until key is pressed */
PORTB &= ~(1<<PORTB5);

}
else {

/* switch on (1) the LED*/
PORTB |= 1<<PORTB5;

}
} return 0;

}

8/30/2017

4

Soldering connectors for Xplained Mini kit

 Take 2 male headers each of 18-pins.

 Insert the thin side of the headers to outermost ports on both left and right side as
shown in the bottom view of Xplained Mini.

 Solder the headers to the Xplained Mini pads from the top.

7

Soldering connectors for Xplained Mini kit

 Insert two 3-pin male headers from the top as shown, and solder from the bottom.

 Similarly Insert the three female headers from the top and solder from the bottom.

8

Male Headers

Female Headers

Female Headers

8/30/2017

5

Soldering the Connectors for LCD
 Insert a 14-pin male header in LCD pads from the bottom and solder from the top.

9

Wiring the Breadboard (1)
 Start with inserting the DC Power Jack pins into rows 28, 29, 30 and columns ‘c’ and ‘e’.

10

8/30/2017

6

Wiring the Breadboard (2)
 Insert the 5V Regulator (7805) into rows 26, 27, 28 and column ‘e’ EXACTLY as shown in

the figure.

11

Wiring the Breadboard (3)
 Connect a 330 Ohm resistance and VCC (+) and GND (-) wires as shown in the figure.

12

8/30/2017

7

Wiring the Breadboard (4)
 Insert long end of a LED in VCC (+) and short end in row 25.

 This LED is lit up whenever power is supplied to the board.

13

Wiring the Breadboard (5)
 Connect the rest of the wires as shown in the figure.

14

8/30/2017

8

Wiring the Breadboard (6)
 On the second breadboard, connect eight LEDs, eight 330 Ohm resistors, 10 kOhm

resistor, push switch, slider switch and other wires as shown in the figure.

15

Wiring the Breadboard (7)
 Connect the two breadboards together by supplying VCC and GND from the left

board to the right one.

16

8/30/2017

9

Wiring the Breadboard (8)

17

a1-a18
Xplained Mini Connectors

j1-j18
Xplained Mini Connectors

b1-b14
LCD Connectors

Putting everything together…
 Insert the left headers of Xplained Mini

into column ‘j’ & rows 1-18 of left
breadboard.

 Insert the right headers of Xplained
Mini into column ‘a’ & rows 1-18 of
right breadboard.

 Position the LCD outward and Insert its
headers into column ‘b’ & rows 1-14 of
left breadboard.

 Connect the right female GND header
of Xplained Mini with the right
breadboard’s ground (-).

 Put a Shunt-Jumper to short the two
pins indicated in order to power up the
board using external adapter.

18

Shunt Jumper

8/30/2017

10

Test Code

19

// ------- Preamble -------- //
#define F_CPU 16000000UL /* Tells the Clock Freq to the Compiler. */
#include <avr/io.h> /* Defines pins, ports etc. */
#include <util/delay.h> /* Functions to waste time */
int main(void) {
 // -------- Inits --------- //
 /* Data Direction Register D: Setting Port D as output. */
 DDRD = 0b11111111;
 // ------ Event loop ------ //
 while (1) {
 PORTD = 0b01010101; /* Turn on alternate LEDs in PORTD */
 _delay_ms(1000); /* wait for 1 second */
 PORTD = 0b10101010; /* Toggle the LEDs */
 _delay_ms(1000); /* wait for 1 second */
 } /* End event loop */
 return (0); /* This line is never reached */
}

Task 1: Blinking a single LED
 Blink a single LED at two different rates based on a push switch.

 When the switch is not pressed, LED should blink at 2Hz frequency.

 As long as the switch is pressed, LED should blink at 8Hz frequency.

 The blinking duty cycle should be 50%
 E.g. for 2Hz frequency, the LED should be on for 1/4th of a second, then off for next 1/4th of a

second and so on.

 You may use the on-board LED and push switch for this task.

20

8/30/2017

11

Task 2: Blinking 8 LEDs one after another
Extend the Task1 with another switch which activates the blinking to loop through all 8
LEDs one after another.

 When the system starts, LED 0 is active and blinks at 2Hz.

 As long as switch 1 is pressed, the currently active LED blinks at 8Hz. Otherwise it
blinks at 2Hz.

 As long as switch 2 is pressed, the currently active LED keeps shifting towards left at
the frequency depending upon the position of switch 1, and starts from 0 again.
 E.g. if LED 0 is active currently, pressing switch 2 shifts the blinking to LED 1, 2, 3, … , 7 and then

again LED 0 and so on.

 When switch 2 is released, the last active LED should keep blinking without anymore
shifting.

21

8/29/2017

1

ECE3411 – Fall 2017

Marten van Dijk
Department of Electrical & Computer Engineering

University of Connecticut
Email: marten.van_dijk@uconn.edu

UART: Universal Asynchronous Receiver & Transmitter

Lec1b.

Based on the Atmega328P datasheet and material
from Bruce Land’s video lectures at Cornel

Copied from Lecture 2a, ECE3411 – Fall 2015, by
Marten van Dijk and Syed Kamran Haider

USART0 (Ch. 19 ATmega328P Datasheet)
� USART = Universal Synchronous

and Asynchronous serial Receiver
and Transmitter

� Clock generator, Transmitter,
Receiver

� Bolted on to the MCU

2

Control
registers

8/29/2017

2

USART

3

2-level (i.e.,
buffered)

UDR0

UDR0

TX empty flag
(can throw interrupt)

Char. Received flag
(can throw interrupt)

Shift Reg.

Shift Reg.

Baud Clock

Baud Clock

Transmit Line (TX)
at D.1

Receive Line (RX)
at D.0

TX and RX at PORTD

4

8/29/2017

3

USART
� USART communicates over a 3-wire cable: TX, RX, Gnd

� Designed for a mechanical printer, a long time ago; protocol is slow

� HW allows full-duplex, i.e., HW can transmit and receive at exactly the same time
� Need interrupt to utilize this in SW

� Baud rate in bits per second: 9600 Bd is approximately 0.1ms per bit
� This is slow: Therefore, in SW start transmitting a character, then do something else!

� In theory the Baud rate can be very large (1Mbit per second) but this can only be realized between
MCUs

� The used cable limits the maximum possible Baud rate

� Per bit the receiving clock makes 4 measurements and they all need to match: All,
e.g. 10, bits within a frame give 40 measurements that all need to match
� The Baud rates of the receiving and transmitting devices need to match within 1/40 = 2.5%

5

UBRR0H and UBRR0L
� Baud rate is translated relative to the system oscillator clock frequency f_OSC to

two registers UBRR0H and UBRR0L, the high and low value of UBRR0 which is in the
range [0,4095]

6

4 samples per bit

2 samples per bit

8/29/2017

4

UBRR0H and UBRR0L

7

Frame Format
� To transmit a byte (i.e., one char) we need at least one start bit (receiving clock

starts when falling edge is received), 8 data bits, and one stop bit: Total of 10 bits.

8

8/29/2017

5

UDR0 for Transmission and Receiving

9

(The receive and transmit buffers RXB and TXB are different in HW; in SW their names, i.e. I/O addresses, are the
same. The shared name UDR0 in read mode means that RXB is read, and UDR0 in write mode means that TXB is written.
Notice that reading and writing of bits in UDR0 can be done simultaneously since they affect different hardware
buffers!)

Control register: UCR0A

� RXC0: Receive character complete � There is something in the receive register worth reading

� TXC0: Transmit character compare � Is set when both entries in the Transmit Shift Register and Transmit
Buffer (UDR0) are shifted out � Not very useful

� UDRE0: Transmit data empty � Goes high when 1 of the two buffers (see above) is empty � Time to
refill

� FE0: Frame error if 4 samples of a bit do not match � Detects bad clock rate

� DOR0: Data overrun: If a new character is complete and RXC0 is still set, implies a lost char � SW did
not read often enough

10

8/29/2017

6

Control register: UCR0A

� UPE0: Parity error

� U2X0: Double speed (twice the baud rate) � reduces error checking (only 2 samples per bit)

� MPCM0: Multiple processor address mode (can connect more than 2 devices to the line)

11

Control register: UCSR0B

12

� RXCIE0: Receive character complete interrupt enable � You can write an ISR for this

� TXCIE0: Enables interrupt for both members in TX queue being empty

� UDRIE0: Enables interrupt if the first of the output pipeline is empty

� RXEN0: RX enable � Disables D.0 for general I/O (completely overrides any other I/O)

� TXEN0: TX enable � Disables D.1 for general I/O (completely overrides any other I/O)

� UCSZ02: see next slides

Multiprocessor Stuff

8/29/2017

7

Control register: UCSR0C

13

Control register: UCSR0C

14

Default: Frames of 10 bits.

8/29/2017

8

Initialization

15

#define F_CPU 16000000UL
#define BAUD 9600
#define MYUBRR F_CPU/16/BAUD-1
int main()
{

…
UART_Init(MYUBRR);
…

}

/* Function Body */
void UART_Init(unsigned int ubrr)
{

UBRR0H = (unsigned char) (ubrr>>8);
UBRR0L = (unsigned char) ubrr;
UCSR0B = (1<<RXEN0) | (1<<TXEN0);

}

Transmission (19.6.1 datasheet & uart.c)

16

int uart_putchar(char c, FILE *stream)
{

/* Alarm (Beep, Bell) */
if (c == '\a')
{

fputs("*ring*\n", stderr);
return 0;

}

/* Newline is translated into a Carriage Return */
if (c == '\n') {uart_putchar('\r', stream); return 0;}

/* In uart.c: loop_until_bit_is_set(UCSR0A, UDRE0); */
while (!(UCSR0A & (1<<UDRE0))) ;
UDR0 = c;

return 0;
}

/* avr/io.h implements useful macros besides defining
* names for bit positions, registers like DDx (or do we
* use DDRx?) etc.

*/

#define _BV(bit) (1 << (bit))
#define bit_is_set(sfr, bit) (_SFR_BYTE(sfr) & _BV(bit))
#define bit_is_clear(sfr, bit) (!(_SFR_BYTE(sfr) & _BV(bit)))
#define loop_until_bit_is_set(sfr, bit)

do { } while (bit_is_clear(sfr, bit))
#define loop_until_bit_is_clear(sfr, bit)

do { } while (bit_is_set(sfr, bit))

8/29/2017

9

Receiving
� int uart_getchar(FILE *stream) in uart.c is a simple line-editor that allows to delete

and re-edit the characters entered, until either CR or NL is entered

� printable characters entered will be echoed using uart_putchar()
� So you can see the character received by the MCU and you can verify whether the transmission was

without error if you recognize the character as the transmitted one (as pressed by the keyboard)

� The core part in uart_getchar is

17

int uart_getchar(FILE *stream)
{

…
while (!(UCSR0A & (1<<RXC0))) ;
c = UDR0;
…
uart_putchar(c, stream);
…

}

ASCII Table

18

8/29/2017

10

Using uart.c

19

#include "uart.h“
…
FILE uart_str = FDEV_SETUP_STREAM(uart_putchar, uart_getchar, _FDEV_SETUP_RW);
…
int main(void)
{

uart_init(); // Initialize UART
stdout = stdin = stderr = &uart_str; // Set File outputs to point to UART stream
….
// Can use fprintf and fscanf anywhere: here or in subroutines
…
return 0;

}

9/5/2017

1

ECE3411 – Fall 2017

Marten van Dijk
Department of Electrical & Computer Engineering

University of Connecticut
Email: marten.van_dijk@uconn.edu

UART: Universal Asynchronous Receiver & Transmitter

Lab1b.

Copied from Lab 2b, ECE3411 – Fall 2015, by
Marten van Dijk and Syed Kamran Haider

UART Setup: COM Port Identification (1)
In order to setup UART communication between the Xplained mini and your PC, we
first need to identify and setup the COM port used by Xplained Mini board

� Connect the Xplained Mini board to your computer via USB cable

� Go to: Control Panel � Device Manager

� Expand the Ports (COM & LPT) section as shown in the figure below.

� Note down the Port number shown against mEDBG Virtual COM Port, i.e. COM3 in
the figure below.

2

9/5/2017

2

UART Setup: COM Port Identification (1)
� Double Click to open the Properties

window of mEDBG Virtual COM Port.

� Make sure the Port Settings are the same
as shown below.

� If necessary, the COM Port number can be
changed under Advanced tab. However,
generally the default COM Port number
works just fine.

3

UART Setup: TeraTerm Pro
We will use TeraTerm Pro terminal to send/receive data to Xplained Mini over UART
1. Download ttpro313.zip file posted under Resources on Piazza

2. Unzip the file and run the application ttermpro.exe

3. In the New Connection window, select Serial and select your mEDBG COM Port
number, e.g. COM3 (refer to the previous slide) and click OK.

4

9/5/2017

3

UART Setup: Using uart.h Library
� In order to facilitate you, we provide a library file “uart.c” which defines

some useful basic UART functions.
� “uart.h” and “uart.c” can be downloaded from Piazza under Resources.

� The corresponding prototypes of the functions are declared in “uart.h” file
which comes along with “uart.c” file.

� In order to use the function provided by “uart.c”, you need to:
1. Add “uart.c” and “uart.h” files in your Atmel Studio project source files

2. Include “uart.h” as a header file in your code, i.e. #include "uart.h"

5

Adding Header and C Files to a Project
� Often, it is more convenient to include files within your project that contain definitions

and functions that you will use frequently.

� This reduces the length of your main c file and eliminates the need for copying and
pasting functions you’ve already written in the past.

� Suppose we want to add “uart.c” and “uart.h” to a project:
1. Create a new project in Atmel Studio.

2. Copy the files “uart.c” and “uart.h” into the project directory.

3. In the ‘Solution Explorer’ window, right click on the project’s name � Add � Existing Item …

4. Select “uart.c” and “uart.h” and click “Add”.

5. Don’t forget to declare/include the header file in you code by calling #include “uart.h”

� See the next few slides for illustration

6

9/5/2017

4

Adding Header and C Files to a Project

7

Adding Header and C Files to a Project

8

9/5/2017

5

Running a UART Test Program (1)
� Connect the board to your computer and create a new project in Atmel Studio

� Include the “uart.h” and “uart.c” files in your project as described earlier

� Notice that PD0 and PD1 serve as UART RXD and TXD pins
� Hence these pins should not be used for any other purpose when using UART

� Therefore make sure to turn off the switch to disconnect LEDs from Ground

9

Turn Off (switch up)

Running a UART Test Program (2)
� Open TeraTerm Pro terminal and create a connection as described earlier

� Copy the test program given on the next slide, compile it and run.

� You should see a “Hello!” message on TeraTerm window
� Notice that you need to create the TeraTerm connection before running the program to see this

greeting message.

� The test program simply sends back the string which it receives from the terminal

� Try writing some small strings, and you should see it printed out on the terminal once
you hit Enter key.

10

9/5/2017

6

UART Test Program

11

#define F_CPU 16000000UL
#include <avr/io.h>
#include <util/delay.h>
#include "uart.h"

// File stream for UART. Used for Transmission to demonstrate the fprintf function.
FILE uart_str = FDEV_SETUP_STREAM(uart_putchar, uart_getchar, _FDEV_SETUP_RW);

char rec[50]; // Declare a character buffer
int main(void)
{

uart_init(); // Initialize UART
stdout = stdin = stderr = &uart_str; // Set File outputs to point to UART stream
fprintf(stdout, "Hello! \n");

while(1){
fscanf(stdin, "%s", rec);
printf("Received: \n");
fprintf(stdout, "%s \n", rec);

}
}

Task: Changing LED Mode using UART
Extend Lab1a Task 1 such that the blinking frequency of the LED can be switched
between 2Hz and 8Hz depending upon the string entered from the Terminal.

� The LED starts blinking at 2Hz

� After every 10 seconds, the program prints the message on terminal:
“Do you want to change the LED mode? (Yes/No)”

� If the user enters “Yes”, the LED blinking rate switches to the other frequency
� E.g. if currently the frequency is 2Hz then it switches to 8Hz and vice versa

� If user enters “No” then the frequency stays the same.

� You may use the on-board LED for this task.

12

8/29/2017

1

ECE3411 – Fall 2017

Marten van Dijk
Department of Electrical & Computer Engineering

University of Connecticut
Email: marten.van_dijk@uconn.edu

General Purpose Digital Input
LCD Interfacing

Lec1c.

Based on the Atmega328P datasheet and material
from Bruce Land’s video lectures at Cornel

Copied from Lecture 2b, ECE3411 – Fall 2015, by
Marten van Dijk and Syed Kamran Haider

Ports and their control registers
� I/O ports are labelled B, C, D: special functions are set up for each

� Can set any bit of any port to be input or output within 1 cycle

� Let x be in {B,C,D}
� DDRx takes an 8 bit value:
� If a bit is 1, then the corresponding pin is an output

� If a bit is 0, then the corresponding pin is an input

� PORTx is an I/O register:
� Write to a bit in PORTx sets the corresponding port/pin if the corresponding DDRx bit is set to 1

� PINx contains inputs

� E.g.,
1. DDRx says output

2. Set PORT

3. Read PIN is the value just set in the PORT

� The above registers control each I/O pin independently at a logical level

2

8/29/2017

2

ATmega328P Header file snippet

3

#define PINB _SFR_IO8(0x03)
#define PINB0 0
#define PINB1 1
#define PINB2 2
#define PINB3 3
#define PINB4 4
#define PINB5 5
#define PINB6 6
#define PINB7 7

#define DDRB _SFR_IO8(0x04)
#define DDB0 0
#define DDB1 1
#define DDB2 2
#define DDB3 3
#define DDB4 4
#define DDB5 5
#define DDB6 6
#define DDB7 7

#define PORTB _SFR_IO8(0x05)
#define PORTB0 0
#define PORTB1 1
#define PORTB2 2
#define PORTB3 3
#define PORTB4 4
#define PORTB5 5
#define PORTB6 6
#define PORTB7 7

Reading a logic value from a Port
Suppose we want to read the logic value of 7th pin of Port B:

1. Read the register PINB in a character variable, i.e.
char reg = PINB

2. Let PINB register has a value 0b10101010 then
reg = 0b10101010

3. Create a mask to mask out all the bits in ‘reg’ except for 7th bit position, i.e.
0b10000000 = (1<<7) = (1<<PINB7)

4. Use the mask to mask out all the bits except for the 7th bit, and decide based on
the resultant value, i.e.
if(reg & (1<<PINB7)) { /* 7th pin is logic 1 */ }
else { /* 7th pin is logic 0 */ }

4

8/29/2017

3

Tristate Buffer
� In a naïve button circuit, a closed button connects a pin to the MCU to Gnd:

� When it opens, the MCU end of the button/switch (i.e. pin) dangles in the air

� It acts as an antenna picking up high/low voltages depending on what frequency the local radio
stations / “noisy” electrical appliances broadcast

� Unreliable!

� Need a pull-up resistor (10kOhm) at the pin, so that if the switch is open, the
voltage at the pin is pulled to high
� If the switch is closed, the resistance to Gnd is much lower so that the voltage at the pin is close to

zero

� The pull-up resistor is implicitly implemented by setting the output of the pin to high
as a result of programming PORTx

5

Tristate Buffer
A (PORT) B (DDR) C (PIN)

0 1 Low impedance
High out 0

1 1 Low impedance
High out 1

0 0 High impedance

1 0 High impedance

6

A

B

C
=

A

B

C

� DDR (B) = 0 and PORT (A) = 1: Eliminates static effects/noise and allows to read
port/pin in a coherent fashion � PORT (A) = 1 activates the pull-up resistor and
makes reading PIN (C) reliable

� DDR (B) = 0 and PORT (A) = 0: Is good for creating high impedance if you do not
want the PIN to have any current at all

8/29/2017

4

Debounce State Machine
� Capture a button push is a very fast process (compared to e.g setting a LED which is quite

slow)

� When you press a switch closed, two surface are brought into contact with each other � no
perfect match and electrical contact will be made and unmade a few times till the surfaces
are firm enough together
� The same is true when you release a button, but in reverse
� Bouncing between high and low voltage is often at a timescale of a few us to a few ms � very often you

do not see it

� No debouncing SW:

7

unsigned char PushFlag_NoDebounce; //message indicating a button push

void Task_PollingButton_NoDebounce(void)
{

//button push of the switch connected to B.7
if (~PINB & 0x80) PushFlag_NoDebounce = 1;
else PushFlag_NoDebounce = 0;

}

Debounce State Machine

8

State: NoPush

Check: button push?

State: MaybePush

Check: button push?

State: Pushed

Check: button push?

Yes Yes: PushFlag = 1;

NoNo: PushFlag =0;

No Yes

Checks happen every 30ms
• What happens if this time is increased?
• What happens if this time is decreased?

8/29/2017

5

Debounce State Machine

9

unsigned char PushFlag_Debounce;

unsigned char PushState; //state machine
#define NoPush 1
#define Maybe 2
#define Pushed 3

void Task_PollingButton_Debounce(void)
{

switch (PushState)
{

case NoPush:
if (~PINB & 0x08) PushState=Maybe;
else PushState=NoPush;
break;

case Maybe:
if (~PINB & 0x08)
{

PushState=Pushed;
PushFlag_Debounce=1;

}
else

{
PushState=NoPush;
PushFlag_Debounce=0;

}
break;

case Pushed:
if (~PINB & 0x08) PushState=Pushed;
else PushState=Maybe;
break;

}
}

Debounce State Machine
� A SW debounce state machine can also be made for a keypad

� Depending on the application, you may want to add more actions to the Finite State
Machine (FSM). In other words, you may want to synchronize your FSM with other
tasks.
� E.g., as soon as PushFlag =1 is set, I may want to increment a counter

� E.g., during the state transition from NoPush to Maybe, the actual time (possibly as a translation from
the HW timers hardcoded in the MCU) is recorded. As soon as NoPush changes into Pushed, this
recorded time is considered to correspond to the moment of the most recent button push.

10

8/29/2017

6

Hardware Debouncer
� HW debouncers are also possible:

� Just by using a low pass filter (a capacitor across the two contacts of the switch)

� However everyone debounces in SW, saving a few cents per capacitor

� Figure shows the schematic of the push button onboard
ATmega328p Xplained Mini kit
� This is Hardware Debounced switch (Notice the capacitor C204)

� The switch is connected to PB7

� We will do software debouncing for this switch as well anyway.

11

LCD
� LCD has a command state machine:

� Erase, Draw character, etc.

� Notice that (see http://www.atmel.com/Images/Atmel-42287-ATmega328P-
Xplained-Mini-User-Guide_UserGuide.pdf) the MCU is programmed through port B
and C:
� Cannot use PB3, PB4, PB5, PC6 to connect to LCD

� If these would be connected to the databus for the LCD, then if a LCD read operation is interrupted,
then the LCD is driving the bus � programmer cannot program the chip � program failure

12

8/29/2017

7

LCD
� LCD must be properly connected, otherwise the LCD does not acknowledge and the

program hangs forever

� LCD library (lcd_lib.c and lcd_lib.h) uses #include <util/delay.h>
� Allows using delay_ms() and delay_us()

� We will use interrupts to program delay_ms() in next lectures (so that other computations can take
place in the meantime)

� Principle: Never use ms delays, but sometimes you may use a us delay because this is hard to get by
using an interrupt

� Need to tell the LCD the clock rate of the MCU by setting
#define F_CPU 16000000UL

13

LCD Example Display

14

Number = Counter

o ---------------------->
<-----------------------

//For accessing program space:
#include <avr/pgmspace.h>

const int8_t LCD_number[] PROGMEM=“Number=\0”;

Is the same as char Name
[] tells C to look at the actual number
of characters in the string and reserve
and appropriate a chunk to hold it

Keyword tells C
to store the string
in program
memory (flash)

• All strings in C are terminated
by a \0 (i.e., the all-zero byte)

• The string “Number=\0” is
converted into ASCII integers,
each integer is stored in 1 byte

How do we store the constant string “Number=\0” ?

Many AVRs have limited amount of RAM in which to store data, but may have more Flash space available. The
AVR is a Harvard architecture processor, where Flash is used for the program, RAM is used for data, and they
each have separate address spaces.
• Let’s use flash for storing data!

8/29/2017

8

LCD Example

15

/**
* Written by Ruibing Wang (rw98@cornell.edu)
* Mods for 644 by brl4@cornell.edu
* Feb 2010
*
* Slightly modified for ECE-3411
* by Marten van Dijk, Jan 2014
*/

#define F_CPU 16000000UL

#include <avr/io.h>
#include <avr/pgmspace.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <util/delay.h>
#include "lcd_lib.h"

const uint8_t LCD_initialize[] PROGMEM = "LCD Initialized\0";
const uint8_t LCD_number[] PROGMEM = "Number=\0";

// LCD display buffer: general purpose print buffer in RAM
// LCD can print 16 characters, 17th character holds \0
uint8_t lcd_buffer[17];

uint16_t count; // a number to display on the LCD
uint8_t anipos, dir; // move a character around

LCD Example (cont.)

16

// task writes to LCD every 200 mSec
void task (void)
{

// increment time counter and format string
sprintf(lcd_buffer,"%-i",count++);
LCDGotoXY(7, 0);
// display the count
LCDstring(lcd_buffer, strlen(lcd_buffer));

// now move a char left and right
LCDGotoXY(anipos,1); //second line
LcdDataWrite(' ');

if (anipos>=7) dir=-1; // check boundaries
if (anipos<=0) dir=1;
anipos =anipos+dir;
LCDGotoXY(anipos,1); //second line
LcdDataWrite('o');

}

Prints to a string destination (not a file unit);
C does internal transformation from integer
to string format.

8/29/2017

9

LCD Example (cont.)

17

int main(void)
{

// Initializations:
initialize_LCD(); //initialize the display
LCDcursorOFF(); // Turn off the cursor
CopyStringtoLCD(LCD_initialize, 0, 0);
_delay_ms(2000); // Display message for 2 seconds

LCDclr(); //clear the display
// put some stuff on LCD starting at char=0 line=0
CopyStringtoLCD(LCD_number, 0, 0);

// Initialize animation state variables
count=0;
anipos = 0;
LCDGotoXY(anipos,1); //second line
LcdDataWrite('o');

while(1) //main task scheduler loop
{

task();
_delay_ms(200);

}
}

This stalls any other computation …
In next lectures we will use HW timer
interrupts that can be used to wake
up task() every 200ms. During task()
idle time of 200ms other tasks can
be completed.

LCD Pin Assignment

18

Taken from LCD Datasheet available here

8/29/2017

10

Block Diagram
� Because of limited number of I/O pins on Xplained

Mini kit, we use LCD in 4-bit mode

19

Pin1: VSS � GND

Pin2: VCC � 5V
Pin3: VEE � GND
Pin4: RS � PC4
Pin5: R/W � GND
Pin6: E � PC5
Pin7: DB0 � N/C
Pin8: DB1 � N/C
Pin9: DB2 � N/C
Pin10: DB3 � N/C
Pin11: DB4 � PC0
Pin12: DB5 � PC1
Pin13: DB6 � PC2
Pin14: DB7 � PC3

Pin15:
CATHODE
� GND

Pin16:
ANODE
� 5V

Taken from LCD Datasheet available here

Write Operation Timing

20

void LcdCommandWrite_UpperNibble(uint8_t cm)
{

// Give the higher half of ‘cm’ to DATA_PORT
DATA_PORT = (DATA_PORT & 0xf0) | (cm >> 4);

// Setting RS=0 to choose the instruction register
// as we are writing a command
CTRL_PORT &= ~(1<<RS);

// Setting ENABLE=1
CTRL_PORT |= (1<<ENABLE);

// Allow the LCD controller to successfully read command in,
// minimum 40 µs
_delay_ms(1);

// Setting ENABLE=0
CTRL_PORT &= ~(1<<ENABLE);

// Allow long enough delay for instruction writing
_delay_ms(1);

} Taken from LCD Datasheet available here

See lcd.h for the definition of DATA_PORT and CTRL_PORT

8/29/2017

11

Read Operation Timing
� Read operation also follows similar

timing as Write operation
� Typically only a ‘Busy Flag’ is to be read

� We don’t read ‘Busy Flag’, instead we
provide the LCD controller long enough
time to process the command

� Hence we only perform LCD writes
� R/W signal is connected to GND, i.e. to always

perform writes

� This saves another I/O pin

21

Taken from LCD Datasheet available here

Timing Characteristics

22

Taken from LCD Datasheet available here

8/29/2017

12

LCD Instruction Set

23

Taken from LCD Controller Datasheet available here

LCD Instruction Set (cont.)

24

8/29/2017

13

LCD Instruction Set (cont.)

25

LCD Initialization: 8-bit Mode

26

8/29/2017

14

LCD Initialization: 8-bit Mode (cont.)

27

LCD Initialization: 4-bit Mode

28

LcdCommandWrite_UpperNibble(0x30);

_delay_ms(4.1);

LcdCommandWrite_UpperNibble(0x30);

_delay_us(100);

8/29/2017

15

LCD Initialization: 4-bit Mode (cont.)

29

LcdCommandWrite_UpperNibble(0x30);

// function set: 4-bit interface
LcdCommandWrite_UpperNibble(0x20);

// 4-bit interface, 2 lines, 5x8 font
LcdCommandWrite(0x28);

// turn display off, cursor off, no blinking
LcdCommandWrite(0x08);

// clear display, set address counter to zero
LcdCommandWrite(0x01);

// entry mode set
LcdCommandWrite(0x06);

LCD Command Write (4-bit Mode)

30

void LcdCommandWrite(uint8_t cm)
{

// First send higher 4-bits
DATA_PORT = (DATA_PORT & 0xf0) | (cm >> 4); //give the higher half of cm to DATA_PORT
CTRL_PORT &= ~(1<<RS); //setting RS=0 to choose the instruction register
CTRL_PORT |= (1<<ENABLE); //setting ENABLE=1
_delay_ms(1); // allow the LCD controller to successfully read command in
CTRL_PORT &= ~(1<<ENABLE); // Setting ENABLE=0
_delay_ms(1); // allow long enough delay for instruction writing

// Send lower 4-bits
DATA_PORT = (DATA_PORT & 0xf0) | (cm & 0x0f); //give the lower half of cm to DATA_PORT
CTRL_PORT &= ~(1<<RS); //setting RS=0 to choose the instruction register
CTRL_PORT |= (1<<ENABLE); //setting ENABLE=1
_delay_ms(1); // allow the LCD controller to successfully read command in
CTRL_PORT &= ~(1<<ENABLE); // Setting ENABLE=0
_delay_ms(1); // allow long enough delay for instruction writing

}

8/29/2017

16

LCD Data Write (4-bit Mode)

31

void LcdDataWrite(uint8_t da)
{

// First send higher 4-bits
DATA_PORT = (DATA_PORT & 0xf0) | (da >> 4); //give the higher half of cm to DATA_PORT
CTRL_PORT |= (1<<RS); //setting RS=1 to choose the data register
CTRL_PORT |= (1<<ENABLE); //setting ENABLE=1
_delay_ms(1); // allow the LCD controller to successfully read command in
CTRL_PORT &= ~(1<<ENABLE); // Setting ENABLE=0
_delay_ms(1); // allow long enough delay

// Send lower 4-bits
DATA_PORT = (DATA_PORT & 0xf0) | (da & 0x0f); //give the lower half of cm to DATA_PORT
CTRL_PORT |= (1<<RS); //setting RS=1 to choose the data register
CTRL_PORT |= (1<<ENABLE); //setting ENABLE=1
_delay_ms(1); // allow the LCD controller to successfully read command in
CTRL_PORT &= ~(1<<ENABLE); // Setting ENABLE=0
_delay_ms(1); // allow long enough delay

}

9/5/2017

1

ECE3411 – Fall 2017

Marten van Dijk
Department of Electrical & Computer Engineering

University of Connecticut
Email: marten.van_dijk@uconn.edu

General Purpose Digital Input
LCD Interfacing

Lab1c.

Adopted from Lab 2c slides “General Purpose Digital Input LCD
Interfacing” by Marten van Dijk and Syed Kamran Haider, Fall
2015.

Push Switch Interface
� A push switch provides a logic HIGH or LOW value

to the microcontroller pin to which it is connected
� HIGH: When the switch is not pressed

� LOW: When the switch is pressed

� Figure shows the schematic of the push button
onboard ATmega328p Xplained Mini kit
� The switch is connected to PB7

� We have another push switch on the bread board
which is connected to PB1

� You should use the switch on the bread board
(Switch 2) for debouncing tasks

2

9/5/2017

2

Available Push Switches

3

Switch 1

Switch 2

LCD Interfacing
� We are going to use the LCD in 4-bit mode

� Only 4 data wires are required instead of 8

� LCD pin assignment is as follows:

4

No. Symbol Connections with ATmega328P

1, 3 VSS, VEE GND

2 VCC 5V

4 RS PC4

5 R/W GND (Always Write to LCD)

6 E PC5

7-10 DB0-DB3 Not Connected

11-14 DB4-DB7 PC0-PC3

Pin1: VSS � GND

Pin2: VCC � 5V
Pin3: VEE � GND
Pin4: RS � PC4
Pin5: R/W � GND
Pin6: E � PC5
Pin7: DB0 � N/C
Pin8: DB1 � N/C
Pin9: DB2 � N/C
Pin10: DB3 � N/C
Pin11: DB4 � PC0
Pin12: DB5 � PC1
Pin13: DB6 � PC2
Pin14: DB7 � PC3

Pin15:
CATHODE

� GND

Pin16:
ANODE

� 5V

9/5/2017

3

Using LCD Library
� In order to facilitate you, we provide a library file “lcd_lib.c” which defines

some useful basic LCD functions.
� “lcd_lib.h” and “lcd_lib.c” can be downloaded from Piazza under Resources.

� The corresponding prototypes of the functions are declared in “lcd_lib.h” file
which comes along with “lcd_lib.c” file.

� In order to use the function provided by “lcd_lib.c”, you need to:
1. Add “lcd_lib.c” and “lcd_lib.h” files in your Atmel Studio project source files

2. Include “lcd_lib.h” as a header file in your code, i.e. #include "lcd_lib.h"

5

LCD Test Program

6

// ------- Preamble -------- //
#define F_CPU 16000000UL /* Tells the Clock Freq to the Compiler. */
#include <avr/io.h> /* Defines pins, ports etc. */
#include <util/delay.h> /* Functions to waste time */
#include "lcd_lib.h" /* LCD Library */

int main(void) {
// -------- Inits --------- //
initialize_LCD(); /* Initialize LCD */

LcdDataWrite('A'); /* Print a few characters for test */
LcdDataWrite('B');
LcdDataWrite(‘C');

// ------ Event loop ------ //
while (1) {

/* Nothing to do */
} /* End event loop */
return (0);

}

9/5/2017

4

Task: Reading a Non-Debounced & Debounced Switch

� Read the input of a push switch (PINB1) and print a
character ‘ * ’ on the LCD for each button push
� Whenever the button connected to PINB1 is pushed, one ‘ * ’ is printed

on LCD. (So, no matter the duration, a single button push should result in
printing only one ‘ * ’.)

� Once a row of LCD is filled with characters ‘ * ’, the
subsequent button pushes should start clearing the LCD
� Most recently printed character is cleared first, and so on until all ‘ * ’

are cleared.

� Implement this task with both non-debounced and
debounced switch.

7

LCD Initialized

LCD Initialized

Printing

Cleaning

Department of Electrical and Computing Engineering

UNIVERSITY OF CONNECTICUT

ECE 3411 Microprocessor Application Lab: Fall 2017

Problem Set P1
There are 5 questions in this quiz. Answer each question according to the instructions given in at
least 3 sentences on own words.

If you find a question ambiguous, be sure to write down any assumptions you make.
Be neat and legible. If we can’t understand your answer, we can’t give you credit! No
handwritten solutions will be accepted.

Any form of communication with other students is considered cheating and will merit an F as final
grade in the course.

SUBMIT YOUR ANSWERS IN PDF FORMAT

Do not write in the box below

1 (x/16) 2 (x/20) 3 (x/22) 4 (x/22) 5 (x/10) Total (xx/100)

Name:

Student ID:

ECE 3411 Fall 2017, Problem Set P1 Page 2 of 7

1. [16 points]: Assume initially PORTC = 0b01011000, PORTB = 0b10100001,
DDRB = 0xA5 and PINB = 100

a. Give the bit representation of PORTC after computing PORTC & = ∼ (1 << 4)

b. What is the bit representation of PORTB: PORTB ∧ = ((1 << 5) | (1 << 1))

c. What is the output of the register PINB : PINB |= ∼ ((12 >> 2)&(16 >> 1))

d. Give the bit representation of DDRB : DDRB |= (19 >> 2)

Initials:

ECE 3411 Fall 2017, Problem Set P1 Page 3 of 7

2. [20 points]: Answer the following questions:

a. The compiler will generate an error while compiling the following line of C code. Write the
correct version of this line in the space below.

const uint8_t my_string PROGMEM = "Hello!";

b. How many lines/wires do we need for a UART connection between a transmitter and receiver?

c. What is the minimum number of bits that must be transmitted to transmit one character in one
UART frame?

d. Encircle one of the following options. The UDR0 register is used for:

(a) Receiving UART frames.
(b) Transmitting UART frames
(c) Both (a) and (b)

e. Consider the following push-switch circuit. When this switch is pushed, the logic value passed
to AVR (i.e. voltage at node ‘To AVR’) is:

(a) Logic HIGH
(b) Logic LOW
(c) None of the above

Figure 1: A push switch circuit.

Initials:

ECE 3411 Fall 2017, Problem Set P1 Page 4 of 7

3. [22 points]: Using Table 1, calculate the required value of UART Baud Rate Register UBRR0 for
a baud rate of 1000 in Asynchronous Normal mode, where the System Oscillator clock frequency of
16MHz. Also, write C code inside Initialize UBRR0(uint16 t Value) function to store the value
of argument Value into UBRR0 register.

Table 1: Equations for calculating UART Baud Rate Register setting

Calculated UBRR0 value =

/* Write the code for initializing ‘UBRR0’ here */

void Initialize_UBRR0(uint16_t Value)

{

}

Initials:

ECE 3411 Fall 2017, Problem Set P1 Page 5 of 7

4. [22 points]: Use LCD Instruction Set table (Table 3) provided on page 6 to fill LCD Commands
Table (Table 2) below with the correct bit values of RS, R/W and DB7-DB0 signals to configure/control
the LCD according the specified desired functionality.

Table 2: LCD Commands Table

No. Desired Functionality RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
1 Set interface data length to 8-bit mode,

number of display lines to 1, and char-
acter font to 5× 10 dots.

2 Turn the display OFF, cursor OFF, and
no blinking.

3 Set the direction of cursor movement
towards right and turn the display shift
mode ON.

4 Turn the display ON, cursor ON, and
no blinking.

5 Move the cursor to position (0, 5), i.e.
first row and sixth column.
Hint: The first row starts from
DD RAM address 0x00.

6 Write the character ‘A’ to the LCD. The
ASCII value of ‘A’ is 0x41.

Initials:

ECE 3411 Fall 2017, Problem Set P1 Page 6 of 7

Table 3: LCD Instruction Set

Initials:

ECE 3411 Fall 2017, Problem Set P1 Page 7 of 7

5. [10 points]: Can you shortly describe what you have learned and feel confident about using in the
future?

End of Problem Set

Initials:

Department of Electrical and Computing Engineering

UNIVERSITY OF CONNECTICUT

ECE 3411 Microprocessor Application Lab: Fall 2017

Advanced Problem Set A1
There are 4 questions in this quiz. Answer each question according to the instructions given in at
least 3 sentences on own words.

If you find a question ambiguous, be sure to write down any assumptions you make.
Be neat and legible. If we can’t understand your answer, we can’t give you credit! No
handwritten solutions will be accepted.

Any form of communication with other students is considered cheating and will merit an F as final
grade in the course.

Do not write in the box below

1 (x/20) 2 (x/20) 3 (x/24) 4 (x/36) Total (xx/100)

ECE 3411 Fall 2017, Advanced Problem Set A1 Page 2 of 7

1. [20 points]: Let Task1() and Task2() be two functions from standard C library. We want to call
Task1() once and only once every time a push button is pushed from released state, and we want to
call Task2() once and only once every time the button is released from pushed state. The function
button pushed() returns TRUE as long as the push button is pressed, and False otherwise.

Implement the above mentioned functionality by extending Task PollingButton Debounce(void)
function given below.

/* Debouncing State Machine */

void Task_PollingButton_Debounce(void)

{

switch (PushState)

{

case NoPush:

if (_button_pushed()) PushState=Maybe;

else PushState=NoPush;

break;

case Maybe:

if (_button_pushed()){ PushState=Pushed; PushFlag_Debounce=1; }

else { PushState=NoPush; PushFlag_Debounce=0; }

break;

case Pushed:

if (_button_pushed()) PushState=Pushed;

else PushState=Maybe;

break;

}

}

/* Write your code below */

Initials:

ECE 3411 Fall 2017, Advanced Problem Set A1 Page 3 of 7

/* Your code continues here */

Initials:

ECE 3411 Fall 2017, Advanced Problem Set A1 Page 4 of 7

2. [20 points]: Answer the following questions.

a. Software based debouncing performs Read-Wait-Verify sequence on the digital input signal to
filter out the glitches. The figure below shows a push-switch circuit and the signal generated by it (i.e.
the voltage at node ‘To AVR’) while going from ‘Pushed’ (Low) state to ‘Released’ (High) state. Each
division on the horizontal axis of the graph represents 100µs. What should be the minimum wait time
for the Read-Wait-Verify sequence in order to filter out all the glitches shown in the graph? Please round
your answer to the closest multiple of 100µs.

Figure 1: A push switch circuit and its generated signal.

b. The push switch circuit from the previous problem has been slightly modified as shown in the
figure below. Please draw the waveform of the signal generated by this switch (i.e. the voltage at node
‘To AVR’) when the switch transitions from ‘Pushed’ state to ‘Released’ state. Compare this waveform
with the one in the previous question and explain the difference between the two.

Figure 2: A modified push switch circuit.

Initials:

ECE 3411 Fall 2017, Advanced Problem Set A1 Page 5 of 7

3. [24 points]: Suppose you are provided with an already initilaized LCD of 100 × 100 pixels along
with the LCD libaray that contains two functions:

• pixel on(row, column), and

• pixel off(row, column).

If function pixel on(i, j) is called, then the pixel residing at the ith row and jth column is switched
“on”. If function pixel off(i, j) is called, then the pixel residing at the ith row and jth column is
switched “off”.

Using the above functions, you are required to control the glow of the LCD by switching on/off the
pixels in a probabilistic manner.

a. Consider all the pixels are off, write a pseudo code to achieve 30% glow by controlling the
switching of pixels in such a way that nearly 30% of the total pixels are “on” all the time with the
following requirement: The distribution of these 30% pixels should be random across the LCD – in
particular, approximately 30% granularity of turning on/off the pixels should be for each row/column
of the LCD.

HINT: Use RAND() function to generate numbers with a uniform distribution.

/* Declare any variables here */

/* Write your pseudo code below */

/* End of pseudo code */

Initials:

ECE 3411 Fall 2017, Advanced Problem Set A1 Page 6 of 7

b. Each individual pixel should not either be always on or always off as this will over burden those
pixels of the LCD that are always on. For this reason, you need to modify your pseudo code developed
for part a. such that each individual pixel is on about 30% of the time in addition to the requirement
that about 30% of the total number of pixels is on at any moment in time. For example, if the LCD
is powered up for T = 1000 seconds, then each pixel is on for approximately 300 seconds randomly
distributed over time and across the LCD.

/* Declare any variables here */

/* Write your pseudo code below */

/* End of pseudo code */

Initials:

ECE 3411 Fall 2017, Advanced Problem Set A1 Page 7 of 7

4. [36 points]: UART (Universal Asynchronous Receiver Transmitter) is a kind of serial commu-
nication protocol which is commonly used for short-distance and low speed data exchange between
computer and peripherals. It includes two main kernel modules, a receiver and a transmitter. The
function of the transmit module is to convert the sending 8-bit parallel data into serial data.

For reliable transmission, it adds a start bit at the head of the data as well as a parity and stop bits at the
end of the data. When the UART sets the START signal to 1, the transmit module immediately enters
the START state to send the data, otherwise stays in the IDLE state. In this state, the 8-bit parallel data
is read into a register BUFFER[7: 0]. The order follows 1 start bit, 8 data bits, 1 parity bit and 1 stop
bit. The parity bit is determined according to the number of logic 1 values in the 8 data bits (1 for even
number of 1’s and 0 for odd number of 1’s). Then the parity bit is output. When the data is ready to
be transmitted, the system enters the WAIT state. In this state, the state machine realizes the parallel to
serial conversion of outgoing data. Finally, logic 1 is output as the stop bit. Until the stop bit is received,
the module stays in the WAIT state. When the data transmission is completed and stop bit is received,
the state machine enters the STOP state. The state machine return to IDLE state after sending the stop
bit, and waits for another data frame transmit command. Moreover, whenever the reset signal is set, the
module goes to IDLE state.

a. Design a state machine diagram for the transmission module of UART.

b. Show a step by step transmission process when we need to transmit the message“Hi!!” (excluding
the apostrophes) to the receiver. (HINT: Use the Hexadecimal form of letters and exclamation marks.)

End of Problem Set
Initials:

