
8/24/2017

1

ECE3411 – Fall 2017

Marten van Dijk
Department of Electrical & Computer Engineering

University of Connecticut
Email: vandijk@engr.uconn.edu

Course Outline

Lecture 0a.

ATmega328P Development Board

2

8/24/2017

2

Interesting bits (1): Interfacing Analog Sensors

� Real world is Analog, whereas our computing systems are
Digital

� Interfacing of Analog Sensors with the MCU is crucial
component of Embedded Systems design

� In this course, you’ll interface Temperature and Ambient
Light sensors with the MCU to perform various control
tasks.

3

Interesting bits (2): Communication Across Devices

� Communication across devices is a vital part of Embedded Systems

� You will explore two important communication protocols namely
� SPI

� I2C

4

8/24/2017

3

Interesting bits (3): Playing with Timers & Interrupts

� A lot of Embedded Systems handle time-triggered and time-critical tasks!

� Timers of Microcontrollers serve several useful purposes related to embedded
system tasks.

� We will be designing:
� Timer based applications such as Stopwatch

� Multi-tasking applications with time-triggered tasks

� Pulse Width Modulation applications

5

Learning Objectives
[O1] Emulation of read examples (how to apply C primitives and how to layout your C code and
well-comment your C-code such that it can be interpreted and understood by colleagues)

[O2] To be able to set up an Interrupt Service Routine (ISR) and how to communicate over
microcontroller pins

[O3] To be able to write Finite State Machines (FSMs) that specify state transitions based on
interrupt events and explain how program variables change

[O4] To be able to adopt a task based programming approach (without blocking delay
functionality)

[O5] To be able to write non-blocking procedures (to communicate with e.g. UART and LCD).

[O6] To be able to debug programming errors and use the debugging tool to observe how the
microcontroller steps through assembly instructions that represent procedures and ISRs.

[O7] To understand the importance of a Real Time Operating System (RTOS) and to be able to
implement basic schedulers.

[O8] To be able to understand how the pins of the microcontroller are connected to peripheral
devices.

[O9] To be able to read and understand the corresponding Atmega datasheet, in particular, how to
enable interrupts and program their properties.

6

8/24/2017

4

Material
� Optional reading: Elliot Williams, Make: AVR Programming, 2014

� Great website: Bruce Land’s course at Cornell:
http://people.ece.cornell.edu/land/courses/ece4760/

� Sign up for Piazza: piazza.com/uconn/fall2017/ece3411 (see email invitation)

� Piazza used for distribute general announcements, solutions to lab problems and
problem sets, as well as additional reading material when needed

� We will also populate http://scl.uconn.edu/courses/ece3411/index.php with slide
decks etc. but without solutions (only educators can request access to solution files)

� Check Order Kit

� Make sure to have set up Eclipse/GCC & Atmel Studio; see document
Tools_Setup.pdf which explains how to do this for your laptop

7

Organization Lectures/Labs
� Split up in 7 blocks of two weeks each: B0 (assignments due before 1st drop date),

B1, B2, B3 (assignments due before 2nd drop date), B4, B5, and B6

� BO: Revisits and refreshes prerequisites: Basic programming skills “if statements”,
“while loops”, “procedures”, “arrays”, etc. (an understanding of ‘complex’ pointer
based data structures is not needed for a successful completion of this course)

� B1, B2, B3: Guide students step-by-step towards solutions – You need to take
initiative and ask questions

� B4, B5: We will let you work independently – You should still ask us questions when
stuck!

� B6: Completely independent RedBot project – No help from instructors

8

8/24/2017

5

Blocks

O1 O2 O3 O4 O5 O6 O7 O8 O9

B0 Testing prerequisite coding skills before the
first drop date.

Y

B1 GPDO, GPDI, LEDs, UART, LCD Y Y Y

B2 ISRs, Timers, non-blocking UART and LCD Y Y Y Y Y Y

B3 Debugging, External Interrupt, Timers Y Y Y Y Y Y

B4 PWM, ADC, Eeprom, Watchdog, Assembly Y Y Y Y

B5 RTOS, DAC, SPI, I2C, Servo Control Y Y Y Y Y

B6 Overview advanced topics, RedBot project Y Y Y Y Y Y

9

Adult-Based Learning Theory
� Adults learn best when they have a flexible but challenging learning environment

� There will be a variety of assignments from which each student can choose how
much to do in a positive/safe but challenging learning environment

� The open-ended assignments allow students to pursue tasks in a manner customized
to individual needs and interests.

� No tests (quizzes, in class questions, lab tests)

� Grading is “safe” in that each (sub-)assignment (lab tasks or questions in problem
sets) is graded either pass or fail, and the requirements for a pass are clearly
specified

� Incomplete work justifies a “fail.”

� We reinforce the safety of the learning environment by giving a number of tokens
representing opportunities to revise work and allowing 24-hour extensions.

10

8/24/2017

6

Pass/Fail
� Dependent lab problems and independent lab questions are each pass/fail

� You need to satisfy the following specifications:
� Working code:

� Your code should compile.

� Your code should solve the lab problem statement – i.e., the code should meet the lab problem’s specification.

� You need to demo your code on your own MCU during lab.

� Coding style:

� Your code should have at least one meaningful comment before each variable declaration, procedure or function definition, if-then-else
statement, and loop/while/for statement. This will help you to make your code readable (to yourself as well as colleagues).

� Unless otherwise stated, you are not allowed to use delay_ms and delay_um functionality.

� You need to follow the coding template as taught in class (in later blocks you will do task based programming).

� Since the first parts with hints in a lab problem lead to the final specification, you will only submit the code corresponding to this final
specification in pdf form to the TA, who will verify the coding style and add questions, see below.

� Understanding:

� See syllabus for formulation: You need to be able to understand and express in own words the thought process that led you to your design
choices – This will be tested in personalized (closed-book and/or oral) tests

� If you cannot explain your thought process at a spot in your code, your letter grade will be reduced by 1/3 letter grade. So, if you cannot
properly explain your thought process to say 3 different spots in your code, then your letter grade drops by a full letter!

11

Pass/Fail
� Problem set questions are each Pass/Fail

� Each (sub-)question in the problem set must be answered using at least 3 sentences. If you do not
satisfy this requirement, then the points collected by your good answers will be halved. So, we
are checking whether you put in effort.

� Each question part is graded pass/fail. If a question part is correct/passed, then it receives the full
number of points allocated to that part. If failed, zero points are given.

� See syllabus for formulation: You need to be able to understand and express in own words the
thought process that led you to your answers – This will be tested in personalized (closed-book
and/or oral) tests

� If you cannot explain your thought process that led you to an answer for a question part, your letter grade will be reduced by
1/3 letter grade. So, if you cannot properly explain your thought process to say 3 different question parts in your problem set,
then your letter grade drops by a full letter!

� See syllabus for formulation: You need to be able to understand and express in own words how the
posted solution for question parts are different from yours and why – This will be tested in
personalized (closed-book and/or oral) tests

� If you cannot explain how a posted solution for a question part is different from yours and why, we reduce your problem set
score by 20% of the points allocated to the question part referred at. So, if you cannot properly explain the posted solution to
say 3 different question parts in your problem set which were allocated 4, 8, and 8 points out of a 100, then 4 = 20%*(4+8+8)
points will be subtracted from the points accumulated by your correctly answered problem parts.

12

8/24/2017

7

Block Structure

13

Mo We Mo We Mo We
Leca Lecb Lecc Review (Next Block starts)
Laba out Demo Laba

“E” Test Laba
Sol Laba out

Labb out Demo Labb
“E” Test Labb
Sol Labb out

Labc out Demo Labc
“E” Test Labc
Sol Labc out

LAB out Demo LAB
“E” Test LAB
Sol LAB out

Problem sets
P and A out

“E” Test P and A
If no test is postponed,
then Sol P and A out

“S” Test P and A

!! Exact due dates/times of lab assignments and problem sets are in the syllabus !!

Grading

14

Letter grade
or Pass/Fail
requirements

Dependent
Labs (B0 has 2;
B1-5 each 3)

Independent
Lab Questions
(B0-5 each 2)

PSets Adv.
PSets

24hr
Ext.
Tok.

RedBot
Project
(No tokens)

A/Pass 17 (B0-B5)
3 Rev. Tokens

12 (B0-B5)
1 Rev. Token

P1-P5
85%

A1-A6
80%

6 plus 1
for essay

Pass

B/Pass 17 (B0-B5)
4 Rev. Tokens

12 (B0-B5)
2 Rev. Token

P1-P5
80%

A1-A5
70%

6 plus 1
for essay

Not Req.

C/Pass 17 (B0-B5)
5 Rev. Tokens

2 (B0) P1-P5
70%

Not Req. 4 plus 1
for essay

Not Req.

D/Fail 11 (B0-B3)
5 Rev. Tokens

2 (B0) P0-P3
60%

Not Req. 4 plus 1
for essay

Not Req.

Revision token: See syllabus for formulation, you will see our solutions and you will make your code work
accordingly and explain in at least 5 sentences in own words how your previous code needed to be improved

Help from instructors
Collaboration students

Help from instructors
NO collaboration students

8/24/2017

8

Collaboration
� You can ask for help during labs and office hours from the instructors for the red

colored columns in the table, i.e., dependent lab assignments and problem sets.

� You are allowed to collaborate with colleague students only on dependent labs
– but not any of the independent labs and problem sets.

� You may not discuss independent labs and problem sets in any way, shape, or
form with anyone other than your instructor. You are not allowed to collaborate
or receive help from instructors for the independent labs and RedBot project.

� DURING THIS COURSE YOU ARE NOT ALLOWED TO RETRIEVE OR LOOKUP
SOLUTIONS FROM OTHER SOURCES

15

How to be successful in class?
� I expect you to be actively engaged in your learning. Ask questions during labs, office

hours, review sessions. In order to learn how to program an MCU with peripherals you will
need to practice.

� Prepare diligently outside of class and come to class ready to work. Don’t procrastinate
and ask for help when stuck. Be engaged and active in your learning – make effective use
of lab time! Be engaged and active in your learning after class

� Adopt a “growth mindset” for your intellectual development

� Practice self-regulated learning

� You should make sure to anticipate unexpected distractions and finish your work early.
See syllabus for formulation: You can use a maximum of one 24-hour extension token per
problem set, dependent lab, or independent lab.
� A revision token is only possible for labs and this will buy you extra days with access to our solutions

� Problem sets must be completed over the course of about 2 weeks – plenty of time

� All work (questions in problem sets, lab problems, project) is graded on a pass/fail
basis, so careful attention to the specifications for acceptable work is a must

16

8/24/2017

9

Calendar: B0

17

1
Mo

28-Aug

Lec0a:

Course Outline + Grading
policy

Lab0a:

Examples basic C-Programming

Read syllabus

Lab0a due Su 3-Sept

P0 and Essay out

We
30-Aug

Lec0b:

Introduction to C-
Programming

Lab0b:

Examples basic C-Programming
Continued

Lab0b due Tu 5-Sept

2 4-Sept Labor Day – no classes Labor Day – no classes

We
6-Sept

REVIEW, Q&A

C-Programming, Grading
policy

Independent LAB0:

Basic C-Programming using the
Eclipse compiler

LAB0, P0, and Essay due
Su 10-Sept

(No Office Hours)

Calendar: B1

18

3 11-Sept

Lec1a:

Microcontroller introduction +
General Purpose Digital Output
(GPDO)

Lab1a:

AVR Board Setup (soldering) + LEDs
(GPDO)

Ch. 1
Ch. 2 till page 21
Ch. 3
Ch. 4

Lab1a due Su 17-Sept

P1 and A1 out

DROP DATE

13-Sept

Lec1b:

Universal Asynchronous Receiver &
Transmitter (UART)

Lab1b:

UART (recognizing strings)

Ch. 5 till page 97

Lab1b due Tu 19-Sept

4 18-Sept

Lec1c:

General Purpose Digital Input
(GPDI) + LCD Display

Lab1c:

LCD (GPDI)

Ch. 6

Lab1c due Su 24-Sept

20-Sept
REVIEW, Q&A

GPDO, GPDI, LEDs, UART, LCD

Independent LAB1

GPDO, GPDI, LEDs, UART, LCD

LAB1, P1, A1 due Su 24 Sept

Office Hours

8/24/2017

10

Calendar: B2

19

5 25-Sept

Lec2a:

Interrupt Service Routine
(ISR)

Lab2a:

Non-blocking UART +
debounced switches (uses ISR)

Lab2a due Su 1-Oct

P2 and A2 out

27-Sept

Lec2b:

ISRs + Timer 0 + Task based
programming

Lab2b:

Non-blocking LCD

Ch. 9

Lab2b due Tu 3-Oct

6 2-Oct

Lec2c:

Timers 0, 1, and 2

Lab2c:

Non-blocking LCD continued

Lab2b due Su 8-Oct

4-Oct

REVIEW, Q&A

Main focus: ISRs, Timers,
non-blocking UART and LCD

Independent LAB2

Main focus: ISRs, Timers, non-
blocking UART and LCD

LAB2, P2, A2 due Su 8-
Oct

Office Hours

Calendar: B3

20

7 9-Oct

Lec3a:

Debugging

Lab3a:

Debugging

Lab3a due Su 15-Oct

P3 and A3 out

11-Oct

Lec3b:

External Interrupt + Pin Interrupt

Lab3b:

Human reaction time + Capture
Interrupt Timer 1

Ch. 8

Lab3b due Tu 17-Oct

8 16-Oct

Lec3c:

External Interrupt + Task based
programming

Lab3c:

Stopwatch

Lab3c due Su 22-Oct

18-Oct

REVIEW, Q&A

Main focus: Debugging,
External Interrupt, Timers

Independent LAB3

Main focus: Debugging, External
Interrupt, Timers

LAB3, P3, A3 due Su 22-
Oct

Office Hours

8/24/2017

11

Calendar: B4

21

9 23-Oct

Lec4a:

Pulse Width Modulation (PWM)

Lab4a:

PWM

Ch. 10

Lab4a due Su 29-Oct

P4 and A4 out

25-Oct
Lec4b:

Analog-to-Digital Conversion (ADC)

Lab4b:

ADC

Ch. 7
Ch. 12

Lab4b due Tu 31-Oct

10 30-Oct

Lec4c:

Eeprom + Watchdog

Lab4c:

Eeprom + Watchdog + Assembly

Ch. 18: p. 387-396
Ch. 19
Ch. 20

Lab4c due Su 5-Nov

DROP DATE / CONVERSION TO
Pass/Fail
(D+, D, D-, F students will have
completed the course)

1-Nov

REVIEW, Q&A

Main focus: PWM, ADC, Eeprom,
Watchdog, Assembly

Independent LAB4

Main focus: PWM, ADC, Eeprom, Watchdog,
Assembly

LAB4, P4, A4 due Su 5-Nov

Office Hours

Calendar: B5

22

11 6-Nov

Lec5a:

Task based programming revisited +
Real Time Operating System (RTOS)
global understanding

Lab5a:

RTOS Scheduling

Lab5a due Su 12-Nov

P5 and A5 out

8-Nov
Lec5b:

RTOS Cont’d + SPI

Lab5b:

SPI + DAC

Ch. 16

Lab5b due Tu 14-Nov

12 13-Nov

Lec5c:

I2C + RedBot (PID control) + Servo
Control

Lab5c:

I2C

Ch. 11
Ch. 15
Ch. 17

Lab5c due Su 19-Nov

15-Nov

REVIEW, Q&A

Main focus: RTOS, DAC, SPI, I2C,
Servo Control

Independent LAB5

Main focus: RTOS, DAC, SPI, I2C,
Servo Control

LAB5, P5, A5 due Su 19-Nov

Office Hours

8/24/2017

12

Calendar: B6

23

20-Nov Thanksgiving Recess – no classes Thanksgiving Recess – no classes

22-Nov Thanksgiving Recess – no classes Thanksgiving Recess – no classes

13 27-Nov

Lec6a:

Advanced Topics

Independent LAB6/Project:

RedBot

LAB6/RedBot:
Code due Tu 5-Dec
Demo We 6-Dec

A6 out

29-Nov

Lec6b:

Topics advanced MCU Applications
Laboratory (Spring 2018)

Independent LAB6/Project:

RedBot

14 4-Dec
REVIEW, Q&A

Anything

Independent LAB6/Project:

RedBot

A6 due 5-Dec

6-Dec
TBD RedBot Demo

15 11-15 Dec Finals Week – No final Finals Week – No Final

Success !!

24

8/24/2017

1

ECE3411 – Fall 2017

Marten van Dijk, Hamza Omar
Department of Electrical & Computer Engineering

University of Connecticut
Email: {marten.van_dijk, hamza.omar}@uconn.edu

Introduction to C-Programming

Lab 0a.

Adopted from Lab1a slides “Introduction to C-Programming”
by Marten van Dijk and Syed Kamran Haider, Fall 2015.

Prerequisites
� Eclipse development environment (with C Development Tools) installed

� Basic understanding of C Programming

2

8/24/2017

2

Task 1: Approximate the value of �
� The value of � can be calculated by the following series expansion

1 − 1
3 + 1

5 − 1
7 + 1

9 + ⋯ = �
4 ⟹ � −1 �

2� + 1
�

���
= �

4

� Task 1(a): Write a C program that takes a positive (≥ 0) integer � as input and prints the
value of � computed up to the ��� term of the above series.

� E.g. if � = 3 then the program computes � = 4 × 1 − �
� + �

� − �
�

� Task 1(b): Modify the program from Task1(a) such that it terminates only when the absolute
value of the ��� term becomes less than 10��
� Implement your own function to compute the absolute value of a double

� Task 1(c): Modify the program from Task1(b) such that it terminates only when the relative
error in the � values from two consecutive iterations becomes less than 10� , i.e., when the
absolute value of (pi-last_pi)/last_pi is less than 10�
� The final output should be the � value from the most recent iteration, i.e. one with the higher value of �.

3

Task 2: Finding Prime Numbers
� A prime number (or a prime) is a natural number greater than 1 that has no

positive divisors other than 1 and itself.
� E.g. 2, 3, 5, 7, …

� Task 2: Write a C program which takes an integer as input from the user and prints
all the prime numbers (separated by a comma) that are less than the entered
number.
� E.g. if the user inputs “10” then the program should print “2, 3, 5, 7”.

4

8/24/2017

1

ECE3411 – Fall 2017

Marten van Dijk
Department of Electrical & Computer Engineering

University of Connecticut
Email: vandijk@engr.uconn.edu

Introduction to C-Programming

Lecture 0b.

Slides adopted from Marten van Dijk & Syed Kamran Haider ECE 3411 - Fall 2016

Programming Languages

2

8/24/2017

2

Introduction to C-Programming
� The C programming language was designed by Dennis Ritchie at Bell Laboratories

in the early 1970s.

� C is mother language of all programming language used for systems programming.

� It is procedure-oriented and also a mid level programming language.

The C Compilation Model
� The Preprocessor accepts source code as input and

is responsible for
� Removing comments

� Interpreting special preprocessor directives denoted by #.

� Examples: #include <stdio.h> , #define begin { , #define
end }

� The C compiler translates source to assembly code.

� The assembler creates object code.

� The Link Editor combines any library functions
referenced in the source code with the main()
function to create an executable file.

4

Preprocessor

Compiler

Assembler

Link Editor

Source Code

Executable Code

Assembly Code

Object CodeLibraries

8/24/2017

3

A simple C program : Printing ‘Hello World’
� #include <stdio.h>

� Preprocessor directive which loads contents of a certain file
� <stdio.h> allows standard input/output operations

� int main ()
� main is the driver function of a c program where execution starts.
� int means that main returns an integer value

� Bodies of all functions must be contained in curly braces
� ‘ { ’ start of function
� ‘ } ’ end of function

� printf(“Hello World”);
� Prints the string of characters within quotes
� Entire line is called a statement
� All statements must end with a semicolon

� return 0;
� A way to exit a function
� Here it means that the program terminated normally

5

#include <stdio.h>
int main ()
{

printf(“Hello World”);
return 0;

}

#ifndef _STDIO_H_
#define _STDIO_H_
.....
#include <sys/cdefs.h>
#include <machine/ansi.h>
.....
int printf(const char *, ...);
int scanf(const char *, ...);
…

stdio.h

Another ‘Hello World’ Program
� You can define your own macros

� begin represents the opening brace ‘{’

� end represents the closing brace ‘}’

� The body of main () can be enclosed in begin and
end

� However, the recommended way of enclosing the
function body is to use the braces ‘{ }’

� You can define other macros as well, e.g.
� #define MAX_ARRAY_SIZE 100

6

#include <stdio.h>
#define begin {
#define end }
int main ()
begin

printf(“Hello World”);
return 0;

end

8/24/2017

4

Tokens in C
� Keywords

� These are reserved words of the C
language.

� For example int, float, if, else, for, while
etc.

� Identifiers
� An Identifier is a sequence of letters and

digits, but must start with a letter.

� Identifiers are used to name variables,
functions etc.

� Identifiers are case sensitive.

� Valid: Root, _getchar, __sin, x1, x2, x3,
x_1, If

� Invalid: 324, short, price$, My Name

� Constants
� 13, ‘a’, 1.3e-5 etc.

� String Literals
� A sequence of characters enclosed in

double quotes as “…”.

� For example “13” is a string literal and
not number 13.

� ‘a’ and “a” are different.

� Operators
� Arithmetic operators: +, -, *, / ,%

� Logical operators: ||, &&, !

� White Spaces
� Spaces, new lines, tabs, comments (A

sequence of characters enclosed in /* and
*/) etc.

� These are used to separate the adjacent
identifiers, keywords and constants.

Basic data types
char Stored as 8 bits.

Unsigned 0 to 255.
Signed -128 to 127.

short int Stored as 16 bits.
Unsigned 0 to 65535.
Signed -32768 to 32767.

int Same as either short int or long int

long int Stored as 32 bits.
Unsigned 0 to 4294967295.
Signed -2147483648 to 2147483647

float Approximate precision of 6 decimal digits (single precision).

double Approximate precision of 14 decimal digits (double precision).

8/24/2017

5

Constants
� Numerical Constants

� Constants like 12, 253 are stored as int type (No decimal point).

� Numbers with a decimal point (21.53) are stored as float or double.

� Character and string constants
� ‘c’ , a single character in single quotes are stored as char.

� Some special character are represented as two characters in single quotes.
� ‘\n’ = newline,

� ‘\t’ = tab,

� ‘\\’ = backlash,

� ‘\”’ = double quotes.

� A sequence of characters enclosed in double quotes is called a string constant or string literal.
� For example : “Hello”

Variables
� Variable names correspond to locations in the computer's memory

� Every variable has a name, a type, a size and a value

� Naming a Variable

� Must be a valid identifier

� Must not be a keyword

� Names are case sensitive

� Declaring a Variable

� Each variable used must be declared. Example : data-type var1, var2,…;

� Declaration announces the data type of a variable and allocates appropriate memory
location.

� Initializing value to a variable in the declaration itself: data-type var = expression;

� Examples: int sum = 0; char newLine = ‘\n’; float epsilon = 1.0e-6 ;

10

8/24/2017

6

Global and Local variables
� Global Variables
� These variables are declared outside all functions.

� Life time of a global variable is the entire execution period of the program.

� Can be accessed by any function defined below the variable’s declaration, in a file.

� Local Variables
� These variables are declared inside some functions.

� Life time of a local variable is the entire execution period of the function in which it is
defined.

� Cannot be accessed by any other function.

� In general variables declared inside a block are accessible only in that block.

Example of global and local variable

12

/* Compute Area of a circle */
#include <stdio.h>
float pi = 3.14159; /* Global variable */

int main() {
float rad; /* Local variable*/

printf(“Enter the radius “);
/* scanf obtains a value from user */
/* Value is stored in rad */
/* %f indicates that value should be float */
scanf(“%f” , &rad);

if (rad > 0.0) {
float area = pi * rad * rad;
printf(“Area = %f\n” , area);

}
else {

printf(“Negative radius\n”);
}
return 0;

}

8/24/2017

7

Arithmetic Operators
� A = B � Assignment: A gets the value of B

� A + B � Add A and B together

� A – B � Subtract B from A

� A * B � A multiplied by B

� A / B � A divided by B

� A % B � Modulo: Integer remainder of A/B

13

int A = 11;
int B = 4;
int X = A / B; // X gets the value 2. Since X is an integer, the fractional part is ignored.
int Y = A % B; // Y gets the value 3 since A=BX+Y

Example:

Comparison Operators
� A == B � A is equal to B?

� A != B � A is NOT equal to B?

� A > B � A is greater than B?

� A < B � A is less than B?

� A >= B � A is greater than/equal to B?

� A =< B � A is less than/equal to B?

14

8/24/2017

8

Logical Operators
Logical Operators map the inputs to either TRUE (Logical 1) or FALSE (logical 0)

These operators result in a single bit output

� !A � NOT A

� A && B � A AND B

� A || B � A OR B

15

if statement is only satisfied if
� A is logical high OR,

� B AND C are logical high OR,

� D is logical low.

if (A || (B && C) || !D)
{

//do something;
}

Example:

Bitwise Operators
Bitwise operators map input bit vectors to the same sized output bit vector

� ~A � Bitwise complement of A

� A & B � Bitwise AND of A and B

� A | B � Bitwise OR of A and B

� A ^ B � Bitwise XOR of A and B

� A << B � Bitwise left shift A by B positions

� A >> B � Bitwise right shift of A by B positions

16

8/24/2017

9

Bitwise Operators Examples
Let A = 0b11 and B = 0b01 then

� A represents the bit vector 11

� B represents the bit vector 01

� ~A = 0b00

� A & B = 0b11 & 0b01 = 0b01

� A | B = 0b11 | 0b01 = 0b11

� A ^ B = 0b11 ^ 0b01 = 0b10

� A << B = 0b11 << 0b01 = 0b11 << 1 = 0b10

� A >> B = 0b11 >> 0b01 = 0b11 >> 1 = 0b01

We use bitwise operators frequently to manipulate the register values.

Prefix & Postfix Increment/Decrement
� ++A � The value of A is incremented before assigning it to variable A

� --A � The value of A is decremented before assigning it to variable A

� A++ � The value is incremented after assigning it to the variable A

� A-- � The value is decremented after assigning it to the variable A

18

8/24/2017

10

Pre/Post Increment Examples

� This prints 1, 2, 3, 4

� x is incremented BEFORE the comparison. Since 1 is less than 5, a
‘1’ is printed. This is repeated until x = 4.

� Then the condition for the while loop fails, since x will be
assigned a value of 5 before the values are compared.

19

int x = 0;
while(++x < 5)
{

printf(“%d “, x);
}

� This prints 1, 2, 3, 4, 5.

� x is incremented AFTER the comparison, therefore, it meets the
criteria of the while loop until x = 5.

int x = 0;
while(x++ < 5)
{

printf(“%d “, x);
}

Compound Assignments
� A += B � A = A + B

� A -= B � A = A – B

� A *= B � A = A * B

� A /= B � A = A/B

� A %= B � A = A%B

� A &= B � A = A&B

� A |= B � A= A|B

� A <<= B � A = A<<B

� A >>= B � A = A>>B

20

8/24/2017

11

Control Structures: if/else statement
� if statement can be used to execute some

code if the condition in the expression is
met.

� It can be used to execute a single code
statement or a block of statements.

� if/else statement defines the alternate code
to execute if the if-condition is not met.

� Note: if/else statements can be strung
together with more if/else statements to
add conditions to the ‘else’ parts.

21

if(expression)
<statement>

if(expression)
{

/* Block of statements */
}

if(expression){
/* Block of statements */

} else {
/* other statements */

} else if (expression) {
/* other statements */

} else if (..){
/* ... */

}

Control Structures: switch statement
� Used as a substitute for lengthy if statements

that look for several conditions of some
variable.

22

switch (<expression>)
{

case <label1> :
<statements 1>
break;

case <label2> :
<statements 2>
break;

default :
<statements 3>

}

8/24/2017

12

Control Structures: Loops
� while loop: While the condition in the

expression statement is true, execute
the statements in the loop.

� for loop: Similar to the while loop.
expression1 initializes a variable,
expression2 is a conditional
expression, expression3 is a modifier,
like an increment (x++).

� do-while loop is similar to while loop.
It ensures that the block of statements
is executed at least once.

23

while (<expression>)
{

<statements>
}

for (<expression1>; <expression2>; <expression3>)
{

<statements>
}

do
{

<statements>
}
while (<expression>);

for Loop Example

24

#include <stdio.h>
int main() {

int f;
for (f=0; f <= 300; f += 20) {

printf("%3d %6.1f \n", f, (5.0 / 9.0) * (f – 32.0));
}
return 0;

}

Temperature units conversion from Fahrenheit to Celsius:

� %3d
� % means “Print a variable here”
� 3 means “Use at least 3 spaces

to display, padding as needed”
� d means “The variable will be an

integer”

� %6.1f means “Print a float
using 6 digits and round up to
1 decimal digit”.

Interesting Fact:

� To approximate Celsius from Fahrenheit in your head:
� Subtract 32 from F

� Take half of the result and increase it by 10%

8/24/2017

13

Conditional Expressions
� Conditional expressions

expr1? expr2 : expr3;

� If expr1 is true then execute expr2 else execute expr3

for (int i=0; i<n; i++) {
printf("%d %c", a[i], (i%10==9 || i==(n-1))? '\n' : ' ');

}

Example:

Break and Continue statements

� break is used to terminate a loop immediately.

� continue is used to skip the subsequent statements inside the loop.

while(test expression){
<statements>
if(test expression)

break;
<statements>

}

while(test expression){
<statements>
if(test expression)

continue;
<statements>

}

Examples:

8/24/2017

14

Type conversion

� The operands of a binary operator must have the same type and the result is also of the same type.

� Integer division: c = (9 / 5)*(f - 32)

� The operands of the division are both int and hence the result also would be int.

� For correct results, one may write c = (9.0 / 5.0)*(f - 32)

� In case the two operands of a binary operator are different, but compatible, then they are converted to the
same type by the compiler. The mechanism (set of rules) is called Automatic Type Casting.

c = (9.0 / 5)*(f - 32)

� It is possible to force a conversion of an operand. This is called Explicit Type casting.

c = ((float) 9 / 5)*(f - 32)

Functions
� Functions are blocks of code that perform a number of pre-defined commands to

accomplish something productive.
� Library Functions

� User Defined Functions

� Function prototypes are usually declared in the header files.

� General format for a function prototype
return-type function_name (arg_type arg1, ..., arg_type argN);

� General format for a function body
return-type function_name (arg_type arg1, ..., arg_type argN)

{

/* Code for function body */

}

28

8/24/2017

15

Functions Example

29

#include <stdio.h>
int mult (int x, int y); // Function Prototype

int main()
{

int x, y, z;
printf("Please input two numbers to be multiplied: ");
scanf("%d", &x); // Call to a library function
scanf("%d", &y); // Call to a library function
z = mult(x, y); // Call to a user-defined function
printf("The product of your two numbers is %d\n", z);

}

/* Function Body */
int mult (int x, int y)
{

return x * y;
}

8/24/2017

1

ECE3411 – Fall 2017

Marten van Dijk, Hamza Omar
Department of Electrical & Computer Engineering

University of Connecticut
Email: {marten.van_dijk, Hamza.omar}@uconn.edu

Introduction to C-Programming

Lab 0b.

Adopted from Lab1b slides “Introduction to C-Programming” by Marten
van Dijk and Syed Kamran Haider, Fall 2015.

Prerequisites
� Eclipse development environment (with C Development Tools) installed

� Basic understanding of C Programming

2

8/24/2017

2

Task 1: Analyzing the Email Address
We want to determine if the email address entered by a user is of a valid format or
not.

� Write a C program that takes an email address as input (character by character)
and verifies that:
1. It contains one and only one “at” sign ‘@’

2. It contains at least one period ‘.’ which succeeds the ‘@’ sign

� Please read the input character by character, and implement a state machine to
analyze the input.

� For example
� alice@gmail.com is considered valid.

� alice@mydomain.co.uk is considered valid

� alice@gmail@.com is considered invalid

� alice@gmailcom is considered invalid

3

Task 2: Analyzing the Email Address
We want to determine if the email address entered by a user is of a valid format or
not.

� Write a C program that takes an email address as input (character by character)
and verifies that it is of the form -----@----.uconn.----
� I.e. It contains one and only one at sign ‘@’

� It contains “.uconn.” character sequence which succeeds the ‘@’ sign

� The special characters ‘@’ and ‘.’ cannot be consecutive, i.e. ‘@.’, ‘@@’, ‘..’, and ‘.@’ are invalid

� Please read the input character by character, and implement a state machine to analyze the input.

� For example
� alice@engr.uconn.edu is considered valid.

� alice@mydomain.uconn.co.uk is also considered valid

� alice@engr..uconn.edu is considered invalid

� alice@engruconnedu is considered invalid

4

Department of Electrical and Computing Engineering

UNIVERSITY OF CONNECTICUT

ECE 3411 Microprocessor Application Lab: Fall 2017

Problem Set P0
There are 6 questions in this problem set. Answer each question according to the instructions
given in at least 3 sentences in own words.

If you find a question ambiguous, be sure to write down any assumptions you make.
Be neat and legible. If we can’t understand your answer, we can’t give you credit!

Any form of communication with other students is considered cheating and will merit an F as
final grade in the course.

SUBMIT YOUR ANSWERS IN PDF FORMAT

Do not write in the boxes below

1 (x/20) 2 (x/20) 3 (x/20) 4 (x/20) 5 (x/20) Total (xx/100)

Name:

Student ID:

ECE 3411 Fall 2017, Problem Set P0 Page 2 of 7

1. [20 points]: Answer the following questions (each one is allocated 5 points):

a. Name the loop which executes it’s loop body atleast once?

b. In the code given below, is ’x’ a global variable (i.e. it can be accessed anywhere in the pro-
gram) ?

int main(void)

{

int x;

...

..

}

c. Does the following code print an ”Okay” ?

int main(void)

{

int x = 1;

if(--x == 0)

printf("Okay");

}

d. Consider the following code snippet and give the output of test(12) and test(10)

double test(int x)

{

return (x%4==0)?(x/8):((double)x/8);

}

Initials:

ECE 3411 Fall 2017, Problem Set P0 Page 3 of 7

2. [20 points]: How many times will the statement called loopBody be executed in the following
construct?

int a = 5;

int b= 10;

while (a > 1)

{

for (int i = 0; i < b/a; i++)

loopBody;

a-=2;

}

Initials:

ECE 3411 Fall 2017, Problem Set P0 Page 4 of 7

3. [20 points]: What is the output of the following code segment? Explain your answer.

int x = 28, d = 2;

while(x != 0)

{

if(x % d != 0)

d = d + 1;

else

{

x = x / d;

printf("%d\n", d);

if(x == 1)

break;

}

}

Initials:

ECE 3411 Fall 2017, Problem Set P0 Page 5 of 7

4. [20 points]: Explain the output of the following code snippet.Assume the user gives 14 as the input.
In the snippet below,the bitwise operations on integers are performed on their 16 bit representation.

int i,j,count = 0;

scanf("%d", &i);

for(j = 0; j < 16; j++)

{

if((i & (1 << j)) != 0)

{

count++;

}

}

printf("%d\n", count);

Initials:

ECE 3411 Fall 2017, Problem Set P0 Page 6 of 7

5. [20 points]: Write the C code for the following function which returns a random bit (‘1’ or ‘0’)
with 75% probability for ‘1’ and 25% probability for ‘0’. Explain your answer.
Hint: You may use rand() to generate a random integer.This function returns an integer value between
0 and RAND MAX, where RAND MAX = 32763 = 215 − 1

int get_rand_bit()

{

int bit;

return bit;

}

Initials:

ECE 3411 Fall 2017, Problem Set P0 Page 7 of 7

End of Problem Set

Initials:

